首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS. Analysis of SARS-CoV spike glycoprotein (S) using recombinant plasmid and virus infections demonstrated that the S-precursor (proS) exists as a approximately 190 kDa endoplasmic reticulum form and a approximately 210 kDa Golgi-modified form. ProS is subsequently processed into two C-terminal proteins of approximately 110 and approximately 80 kDa. The membrane-bound proprotein convertases (PCs) furin, PC7 or PC5B enhanced the production of the approximately 80 kDa protein. In agreement, proS processing, cytopathic effects, and viral titers were enhanced in recombinant Vero E6 cells overexpressing furin, PC7 or PC5B. The convertase inhibitor dec-RVKR-cmk significantly reduced proS cleavage and viral titers of SARS-CoV infected cells. In addition, inhibition of processing by dec-RVKR-cmk completely abrogated the virus-induced cellular cytopathicity. A fluorogenically quenched synthetic peptide encompassing Arg(761) of the spike glycoprotein was efficiently cleaved by furin and the cleavage was inhibited by EDTA and dec-RVKR-cmk. Taken together, our data indicate that furin or PC-mediated processing plays a critical role in SARS-CoV spread and cytopathicity, and inhibitors of the PCs represent potential therapeutic anti-SARS-CoV agents.  相似文献   

2.
Optimization of our previously described peptidomimetic furin inhibitors was performed and yielded several analogs with a significantly improved activity. The most potent compounds containing an N-terminal 4- or 3-(guanidinomethyl)phenylacetyl residue inhibit furin with K(i) values of 16 and 8 pM, respectively. These analogs inhibit other proprotein convertases, such as PC1/3, PC4, PACE4, and PC5/6, with similar potency, whereas PC2, PC7, and trypsin-like serine proteases are poorly affected. Incubation of selected compounds with Madin-Darby canine kidney cells over a period of 96 h revealed that they exhibit great stability, making them suitable candidates for further studies in cell culture. Two of the most potent derivatives were used to inhibit the hemagglutinin cleavage and viral propagation of a highly pathogenic avian H7N1 influenza virus strain. The treatment with inhibitor 24 (4-(guanidinomethyl)phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide) resulted in significantly delayed virus propagation compared with an inhibitor-free control. The same analog was also effective in inhibiting Shiga toxin activation in HEp-2 cells. This antiviral effect, as well as the protective effect against a bacterial toxin, suggests that inhibitors of furin or furin-like proprotein convertases could represent promising lead structures for future drug development, in particular for the treatment of infectious diseases.  相似文献   

3.
This review is devoted to structure and properties of proprotein convertases (PCs), the intracellular Ca(2+)-dependent serine endoproteases of mammalia, that play the essential role in the processing of inactive protein precursors and their transforming into bioactive mature products. PCs are also implicated in development of a great variety of diseases including bacterial or viral infections and such pathologies as cancer, Alzheimer's disease, obesity and so on. Owing to these findings, PCs are considered as promising targets for design of their inhibitors and development of new potential therapeutic agents. Only several endogenous protein inhibitors are identified now for PCs: pro7B2 (Proprotein 7B2), the specific chaperon of PC2, granine-like precursor of neuroendocrine protein proSAAS, the selective ligand of PC1, and serpin Spn4A (Serine Proteinase Inhibitor) of Drosophila melanogaster that inhibits PC2 and furin. By the methods of site-directed mutagenesis, the bioengineered inhibitors of PCs were also designed. Structures and properties of protein or peptide fragments as inhibitors of PCs were also discussed. Particularly, the properties of polyarginines and small peptides containing pseudopeptide bond at the scissile site a suitable peptide substrate were described. The inhibitory activity of non-peptide compounds such as derivatives of andrographolid from Andrographis paniculata (K(i) = 2.6-200 microM against furin), certain complexes of pyridine analogs with ions of Cu2+ or Zn2+ inhibiting furin with IC50 = 5-10 microM, derivatives of 2,5-dideoxy-streptamine containing several guanidine groups (K(i) = 6-812 nM for furin) and also a number of dicoumarols (K(i) = 1-185 microM against furin) and some flavonoids (with K(i) = 5-230 microM for furin) were reflected in the article. The effects of enediynyl-amino acids derivatives or their peptides (K(i) = 40 nM against furin) were considered. Inhibition of PC2 by N-acylated bicyclic guanidines (K(i) = 3.3-10 microM) or derivatives of pyrrolidin bispyperazines (K(i) = 0.54-10 microM) are considered too. Some of synthesized derivatives may serve as lead compounds for design of the specific inhibitors for individual PCs.  相似文献   

4.
Proprotein convertases are enzymes that proteolytically cleave protein precursors in the secretory pathway to yield functional proteins. Seven mammalian subtilisin/Kex2p-like proprotein convertases have been identified: furin, PC1, PC2, PC4, PACE4, PC5 and PC7. The binding pockets of all seven proprotein convertases are evolutionarily conserved and highly similar. Among the seven proprotein convertases, the furin cleavage site motif has recently been characterized as a 20-residue motif that includes one core region P6-P2´ inside the furin binding pocket. This study extended this information by examining the 3D structural environment of the furin binding pocket surrounding the core region P6-P2´ of furin substrates. The physical properties of mutations in the binding pockets of the other six mammalian proprotein convertases were compared. The results suggest that: 1) mutations at two positions, Glu230 and Glu257, change the overall density of the negative charge of the binding pockets, and govern the substrate specificities of mammalian proprotein convertases; 2) two proprotein convertases (PC1 and PC2) may have reduced sensitivity for positively charged residues at substrate position P5 or P6, whereas the substrate specificities of three proprotein convertases (furin, PACE4, and PC5) are similar to each other. This finding led to a novel design of a short peptide pattern for small molecule inhibitors: [K/R]-X-V-X-K-R. Compared with the widely used small molecule dec-RVKR-cmk that inhibits all seven proprotein convertases, a finely-tuned derivative of the short peptide pattern [K/R]-X-V-X-K-R may have the potential to more effectively inhibit five of the proprotein convertases (furin, PC4, PACE4, PC5 and PC7) compared to the remaining two (PC1 and PC2). The results not only provide insights into the molecular evolution of enzyme function in the proprotein convertase family, but will also aid the study of the functional redundancy of proprotein convertases and the development of therapeutic applications.  相似文献   

5.
The aim of this study was to investigate whether transformation of quiescent vascular smooth muscle cells (VSMCs) into proliferating secretory cells is accompanied by an expression of processing enzymes that activate de novo-synthesized growth factors. Three enzymes belonging to the family of the kexin/subtilisin-like mammalian proprotein convertases (PCs), furin, PC5, and PC7, were found to be upregulated after balloon denudation in vivo. To determine their importance in these cell processes, we investigated their gene regulation using a short-term organ culture system. After incubation of rat aorta for 4 and 24 hr in serum-free medium, we demonstrated a significant induction of VSMC proliferation. The affected subset of VSMCs, positive for alpha-smooth muscle actin, also expressed proliferating cell nuclear antigen (PCNA). Our results revealed a parallel upregulation of furin, PC5, and PC7 in PCNA-immunolabeled cells. As a substrate model for comparison with PCs we used nerve growth factor (NGF). NGF is known to be activated by PCs. As shown by Northern blotting analysis, NGF mRNA concentration was significantly increased in cultured explants. NGF was released into the culture medium. In conclusion, both PCs and NGF are coordinately modulated on induction of VSMC proliferation.  相似文献   

6.
Furin and related proprotein convertases cleave the multibasic motifs R-X-R/K/X-R in the precursor proteins and, as a result, transform the latent proproteins into biologically active proteins and peptides. Furin is present both in the intracellular secretory pathway and at the cell surface. Intracellular furin processes its multiple normal cellular targets in the Golgi and secretory vesicle compartments while cell-surface furin appears to be essential only for the processing of certain pathogenic proteins and, importantly, anthrax. To design potent, safe and selective inhibitors of furin, we evaluated the potency and selectivity of the derivatized peptidic inhibitors modeled from the extended furin cleavage sequence of avian influenza A H5N1. We determined that the N- and C-terminal modifications of the original RARRRKKRT inhibitory scaffold produced selective and potent, nanomolar range, inhibitors of furin. These inhibitors did not interfere with the normal cellular function of furin because of the likely functional redundancy existing between furin and other proprotein convertases. These furin inhibitors, however, were highly potent in blocking the furin-dependent cell-surface processing of anthrax protective antigen-83 both in vitro and cell-based assays and in vivo. We conclude that the inhibitors we have designed have a promising potential as selective anthrax inhibitors, without affecting major cell functions.  相似文献   

7.
Pathogens or their toxins, including influenza virus, Pseudomonas, and anthrax toxins, require processing by host proprotein convertases (PCs) to enter host cells and to cause disease. Conversely, inhibiting PCs is likely to protect host cells from multiple furin-dependent, but otherwise unrelated, pathogens. To determine if this concept is correct, we designed specific nanomolar inhibitors of PCs modeled from the extended cleavage motif TPQRERRRKKR downward arrowGL of the avian influenza H5N1 hemagglutinin. We then confirmed the efficacy of the inhibitory peptides in vitro against the fluorescent peptide, anthrax protective antigen (PA83), and influenza hemagglutinin substrates and also in mice in vivo against two unrelated toxins, anthrax and Pseudomonas exotoxin. Peptides with Phe/Tyr at P1' were more selective for furin. Peptides with P1' Thr were potent against multiple PCs. Our strategy of basing the peptide sequence on a furin cleavage motif known for an avian flu virus shows the power of starting inhibitor design with a known substrate. Our results confirm that inhibiting furin-like PCs protects the host from the distinct furin-dependent infections and lay a foundation for novel, host cell-focused therapies against acute diseases.  相似文献   

8.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   

9.
Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.  相似文献   

10.
Mammalian proprotein convertases (PCs) belong to the family of recently discovered serine proteases responsible for the processing of a large number of precursor proteins into their active forms. The enzymatic activities of the convertases have been implicated in a variety of disease states, such as cancer and infectious and inflammatory diseases. Like many other proteases, PCs are also synthesized as inactive proenzymes with N-terminal extensions as their prosegments. Here, we present the inhibitory activities of a number of "putative" interfacial peptide fragments derived from the proregion of PC7. We found that a peptide fragment corresponding to the C-terminal region (residues 81p-104p, or C24: E(1)-A-V-L-A-K-H-E-A-V-R-W-H-S-E-Q-R-L-L-K-R-A-K-R(24)) of the PC7 prosegment displays a strong inhibition (K(i) = 7 nM) of the PC7 enzyme comparable to that of the full-length (104 residue) prosegment. The same 24 residue peptide shows significantly populated helical conformations in an aqueous solution close to the physiological condition. Structure calculations driven by NOE distance restraints revealed a slightly kinked helical conformation for the entire peptide, characterized by many side-chain/side-chain interactions including those involving charged residues E8-R11-E15 and hydrophobic residues W12 and L19. These results suggest that the C-terminal region of the prosegment of PC7 may play a dominant role in conferring the inhibitory potency to the cognate enzyme and this strong inhibitory activity may be a direct consequence of the folded conformation of the peptide fragment in solution. We surmise that such a structure-function correlation for an inhibitory peptide could lead to the design and discovery of molecules mimicking the specific interactions of the PC prosegments for their cognate proteases.  相似文献   

11.
Cell-surface processing of pro-ADAMTS9 by furin   总被引:3,自引:0,他引:3  
Processing of polypeptide precursors by proprotein convertases (PCs) such as furin typically occurs within the trans-Golgi network. Here, we show in a variety of cell types that the propeptide of ADAMTS9 is not excised intracellularly. Pulse-chase analysis in HEK293F cells indicated that the intact zymogen was secreted to the cell surface and was subsequently processed there before release into the medium. The processing occurred via a furin-dependent mechanism as shown using PC inhibitors, lack of processing in furin-deficient cells, and rescue by furin in these cells. Moreover, down-regulation of furin by small interference RNA reduced ADAMTS9 processing in HEK293F cells. PC5A could also process pro-ADAMTS9, but similarly to furin, processed forms were absent intracellularly. Cell-surface, furin-dependent processing of pro-ADAMTS9 creates a precedent for extracellular maturation of endogenously produced secreted proproteins. It also indicates the existence of a variety of mechanisms for processing of ADAMTS proteases.  相似文献   

12.
Proteolytic activation of the precursor envelope glycoproteins gp160 of human immunodeficiency virus type 1 (HIV-1) and gp140 of HIV-2, a prerequisite for viral infection, results in the formation of gp120/gp41 and gp125/gp36, respectively. Cleavage is mediated by cellular proteases. Furin, a member of the eukaryotic subtilisin family, has been shown to be an activating protease for HIV. Here, we compared the presence of furin and other mammalian subtilisins in lymphatic cells and tissues. Northern blot analyses revealed that furin and the recently discovered protease LPC/PC7 were the only subtilisin-like enzymes transcribed in such cells. Furin was identified as an enzymatically active endoprotease present in different lymphocytic, as well as monocytic, cell lines. When expressed from vaccinia virus vectors, the proprotein convertases were correctly processed, transported, and secreted into the media and enzymatically active. Coexpression of different subtilisins with the HIV envelope precursors revealed that furin and LPC/PC7 are able to cleave HIV-1 gp160. Moreover, both enzymes proteolytically processed the envelope precursor of HIV-2. gp140 was also cleaved to some extent by PC1, which is not, however, present in lymphatic cells. Furin- and LPC/PC7-catalyzed cleavage of HIV-1 gp160 resulted in biologically active envelope protein. In conclusion, among the known members of the subtilisin family, only furin and LPC/PC7 fulfill the requirements of a protease responsible for in vivo activation of HIV envelope glycoproteins.  相似文献   

13.
Proprotein convertases (PCs) have been proposed to play a role in tumor necrosis factor-alpha converting enzyme (TACE) processing/activation. Using the furin-deficient LoVo cells, as well as the furin-proficient synoviocytes and HT1080 cells expressing the furin inhibitor alpha(1)-PDX, we demonstrate that furin activity alone is not sufficient for effective maturation and activation of the TACE enzyme. Data from in vitro and in vivo cleavage assays indicate that PACE-4, PC5/PC6, PC1 and PC2 can directly cleave the TACE protein and/or peptide. PC inhibition in macrophages reduced the release of soluble TNF-alpha from transmembrane pro-TNF-alpha. We therefore conclude that furin, in addition to other candidate PCs, is involved in TACE maturation and activation.  相似文献   

14.
Angiopoietin-like protein 4 (ANGPTL4) has been associated with a variety of diseases. It is known as an endogenous inhibitor of lipoprotein lipase (LPL), and it modulates lipid deposition and energy homeostasis. ANGPTL4 is cleaved by unidentified protease(s), and the biological importance of this cleavage event is not fully understood with respect to its inhibitory effect on LPL activity. Here, we show that ANGPTL4 appears on the cell surface as the full-length form, where it can be released by heparin treatment in culture and in vivo. ANGPTL4 protein is then proteolytically cleaved into several forms by proprotein convertases (PCs). Several PCs, including furin, PC5/6, paired basic amino acid-cleaving enzyme 4, and PC7, are able to cleave human ANGPTL4 at a consensus site. PC-specific inhibitors block the processing of ANGPTL4. Blockage of ANGPTL4 cleavage reduces its inhibitory effects on LPL activity and decreases its ability to raise plasma triglyceride levels. In summary, the cleavage of ANGPTL4 by these PCs modulates its inhibitory effect on LPL activity.  相似文献   

15.
Herein we designed, synthesized, tested, and validated fluorogenic methylcoumarinamide (MCA) and chloromethylketone-peptides spanning the Lassa virus GPC cleavage site as substrates and inhibitors for the proprotein convertase SKI-1/S1P. The 7-mer MCA (YISRRLL-MCA) and 8-mer MCA (IYISRRLL-MCA) are very efficiently cleaved with respect to both the 6-mer MCA (ISRRLL-MCA) and point mutated fluorogenic analogues, except for the 7-mer mutant Y253F. The importance of the P7 phenylic residue was confirmed by digestions of two 16-mer non-fluorogenic peptidyl substrates that differ by a single point mutation (Y253A). Because NMR analysis of these 16-mer peptides did not reveal significant structural differences at recognition motif RRLL, the P7 Tyr residue is likely important in establishing key interactions within the catalytic pocket of SKI-1. Based on these data, we established through analysis of pro-ATF6 and pro-SREBP-2 cellular processing that decanoylated chloromethylketone 7-mer, 6-mer, and 4-mer peptides containing the core RRLL sequence are irreversible and potent ex vivo SKI-1 inhibitors. Although caution must be exercised in using these inhibitors in in vitro reactions, as they can also inhibit the basic amino acid-specific convertase furin, within cells and when used at concentrations < or = 100 microM these inhibitors are relatively specific for inhibition of SKI-1 processing events, as opposed to those performed by furin-like convertases.  相似文献   

16.
We present the data and the technology, a combination of which allows us to determine the identity of proprotein convertases (PCs) related to the processing of specific protein targets including viral and bacterial pathogens. Our results, which support and extend the data of other laboratories, are required for the design of effective inhibitors of PCs because, in general, an inhibitor design starts with a specific substrate. Seven proteinases of the human PC family cleave the multibasic motifs R-X-(R/K/X)-R downward arrow and, as a result, transform proproteins, including those from pathogens, into biologically active proteins and peptides. The precise cleavage preferences of PCs have not been known in sufficient detail; hence we were unable to determine the relative importance of the individual PCs in infectious diseases, thus making the design of specific inhibitors exceedingly difficult. To determine the cleavage preferences of PCs in more detail, we evaluated the relative efficiency of furin, PC2, PC4, PC5/6, PC7, and PACE4 in cleaving over 100 decapeptide sequences representing the R-X-(R/K/X)-R downward arrow motifs of human, bacterial, and viral proteins. Our computer analysis of the data and the follow-on cleavage analysis of the selected full-length proteins corroborated our initial results thus allowing us to determine the cleavage preferences of the PCs and to suggest which PCs are promising drug targets in infectious diseases. Our results also suggest that pathogens, including anthrax PA83 and the avian influenza A H5N1 (bird flu) hemagglutinin precursor, evolved to be as sensitive to PC proteolysis as the most sensitive normal human proteins.  相似文献   

17.
In mammals, seven proprotein convertases (PCs) cleave secretory proteins after basic residues, and four of them are called furin-like PCs: furin, PC5, PACE4, and PC7. In vitro, they share many substrates. However, furin is essential during development since deficient embryos die at embryonic day 11 and exhibit multiple developmental defects, particularly defects related to the function of endothelial cells. To define the role of furin in endothelial cells, an endothelial cell-specific knockout (ecKO) of the Furin gene was generated. Newborns die shortly after birth, indicating that furin is essential in these cells. Magnetic resonance imaging revealed that ecKO embryos exhibit ventricular septal defects (VSD) and/or valve malformations. In addition, primary cultures of wild-type and ecKO lung endothelial cells revealed that ecKO cells are unable to grow. Growth was efficiently rescued by extracellular soluble furin. Analysis of the processing of precursors of endothelin-1 (ET-1), adrenomedullin (Adm), transforming growth factor β1 (TGF-β1), and bone morphogenetic protein 4 (BMP4) confirmed that ET-1, Adm, and TGF-β1 are in vivo substrates of endothelial furin. Mature ET-1 and BMP4 forms were reduced by ~90% in ecKO purified endothelial cells from lungs.  相似文献   

18.
Secretoneurin is a recently characterized neuropeptidepresent in the primary amino acid sequence of secretogranin II. We investigated the proteolytic processing of secretogranin II by prohormone convertases in vivo in a cellular system using the vaccinia virus system. Both PC1 and PC2 can cleave the secretogranin II precursor at sites of pairs of basic amino acids to yield intermediate-sized fragments. Other convertases like PACE4, PC5 and furin were not active. For the formation of the free neuropeptide secretoneurin a different pattern was found. Only PC1 but none of the other convertases tested including PC2 were capable of generating secretoneurin. Our results demonstrate that the prohormone convertases PC1 and PC2 are involved in proteolytic processing of secretogranin II. The neuropeptide secretoneurin can only be generated by PC1 suggesting tissue-specific processing of secretogranin II in neurons expressing different subsets of the prohormone convertases.  相似文献   

19.
20.
Posthaus H  Dubois CM  Müller E 《FEBS letters》2003,536(1-3):203-208
Proprotein convertases (PCs) are known to activate many important molecules and their overexpression plays a significant role in tumor progression. Only little is known about the involvement of PCs in the processing of cadherin adhesion molecules, which are potent tumor suppressors. Here we show in a baculovirus overexpression system that the desmosomal cadherins Dsg1 and Dsg3 are substrates for the PC furin. Accordingly, inhibition of PCs in differentiating mouse keratinocytes by alpha 1-anti-trypsin Portland (alpha 1-PDX) negatively interfered with pro-epithelial (proE)-cadherin processing, but unexpectedly also resulted in a dramatic reduction of E-cadherin, Dsg1 and Dsg3 protein and Dsg1 mRNA. Because loss of intercellular adhesion is a rate-limiting step in the transition from benign to malignant tumors, these results have significant implications for the use of PC inhibitors as possible therapeutic tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号