首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H Satoh  M Hosono  S Satoh 《Prostaglandins》1984,27(6):807-820
The effect of angiotensin II (Ang II) on prostaglandin (PG) production in dog renal and femoral vasculature was examined in vivo and in vitro. In pentobarbital anesthetized dogs, the reduction of blood flow induced by intra-arterial infusion of Ang II was potentiated by pre-treatment with indomethacin (5 mg/kg) in the renal but not the femoral vasculature. Isolated renal and femoral arterial strips were incubated and the release of PGE2 and PGI2 (as 6-keto-PGF1 alpha) into the medium was measured by radioimmunoassay. Basal PGE2 and PGI2 production by renal and femoral arterial strips was approximately the same. PGI2 production was predominant for both strips. Ang II stimulated PG production in renal but not femoral arteries. In the renal artery, Ang II-induced PG production was inhibited by indomethacin (10(-6) M), mepacrine (10(-4) M) and saralasin (10(-6) M). These results suggest that Ang II stimulates PG production by the renal artery per se and the Ang II receptor is linked to phospholipase A2 in the renal but not the femoral artery.  相似文献   

2.
Studies were performed to investigate regulatory pathways of loop diuretic-sensitive Na+/K+/Cl- cotransport in cultured rat glomerular mesangial cells. Angiotensin II, alpha-thrombin, and epidermal growth factor (EGF) all stimulated Na+/K+/Cl- cotransport in a concentration-dependent manner. Pertussis toxin pretreatment reduced the effects of angiotensin II and alpha-thrombin but not that of EGF. Addition of the protein kinase C inhibitor staurosporine or down-regulation of protein kinase C by prolonged incubation with phorbol 12-myristate 13-acetate partially reduced the effects of angiotensin II and alpha-thrombin and completely blunted the phorbol 12-myristate 13-acetate-induced stimulation of Na+/K+/Cl- cotransport but did not affect EGF-induced stimulation. Exposure of cells to a calcium ionophore, A23187, resulted in a concentration-dependent stimulation of Na+/K+/Cl- cotransport, which was not significantly inhibited by down-regulation of protein kinase C but was completely inhibited by the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). Stimulation of the cotransport by angiotensin II or alpha-thrombin was also partially inhibited by W-7. Inhibitory effects of protein kinase C down-regulation and W-7 were additive and, when combined, produced a complete inhibition of angiotensin II-induced stimulation of Na+/K+/Cl- cotransport. In saponin-permeabilized mesangial cells, phosphorylation of a synthetic decapeptide substrate for Ca2+/calmodulin-dependent kinase II, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH3, was demonstrated. Maximal activation of the decapeptide substrate phosphorylation required the presence of Ca2+ and calmodulin and was dependent on Ca2+ concentration. These findings indicate that stimulation of Na+/K+/Cl- cotransport by angiotensin II and alpha-thrombin is mediated by protein kinase C and Ca2+/calmodulin-dependent kinases whereas the action of EGF is mediated by other pathways.  相似文献   

3.
K Bj?ro 《Prostaglandins》1985,30(6):989-998
In perfused human umbilical arteries both angiotensin I and II induced vasoconstriction with a monophasic response. Angiotensin I and II induced vasoconstrictions at doses greater than or equal to 10(-8) M and 10(-9) M respectively. Captopril inhibited the angiotensin I response while the angiotensin II receptor blocker Sar1-Ala8 AII inhibited the effect of both angiotensins. PGI2 attenuated the angiotensin II response in a dose dependent pattern. PGE2 and PGF2 alpha in concentrations below the critical levels for creating pressure responses per se, also attenuated the angiotensin II response. The cyclooxygenase inhibitor indomethacin potentiated the angiotensin II response indicating that endogenous production of prostanoids is of importance in the modulation of angiotensin effects.  相似文献   

4.
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production.  相似文献   

5.
T N Tulenko 《Prostaglandins》1981,21(6):1033-1043
The resistance arteries supplying individual exchange villi of the full-term human fetal placenta were examined for their reactivity to various prostaglandins (PG's) as well as for their ability to synthesize biologically active PG's. PGA1, PGF2 alpha, PGE2 and PGE1 produced dose-dependent contractions between 10(-7) and 10(-5)M. The order of potency observed was PGA1 approximately PGF2 alpha greater than PGE2 greater than PGE1. TXB2 was without activity in this preparation. Prostacyclin (PGI2) produced a dose-dependent relaxation of pre-contracted strips between 10(-8)M and 10(-5)M. Arachidonic acid (A.A.) produced stable dose-dependent contractions (10(-5) M to 10(-3)M) which were totally abolished by pretreatment with 10(-7)M meclofenamate (MF). At no concentration of A.A. was any evidence of vascular relaxation observed. Larger concentrations of MF (greater than 10(-6)M) resulted in a non-specific depression of the placental vascular smooth muscle. Meclofenamate (10(-7)M) pretreatment of strips subjected to dose-response studies using PGF2 alpha, PGE2, bradykinin (B K) and angiotensin II (AII) revealed a significant reduction in tension developed to both BK and AII. This finding suggests that the vasoactive peptides BK and AII stimulate the synthesis of vasoconstricting PG's in the fetal placental resistance arteries which relax in response to PGI2 and contract in response to the other PG's tested.  相似文献   

6.
ANG II plays a major role in renal water and sodium regulation. In the immortalized mouse renal collecting duct principal cells (mpkCCD(cl4)) cell line, we treated cells with ANG II and examined aquaporin-2 (AQP2) protein expression, trafficking, and mRNA levels, by immunoblotting, immunofluorescence, and RT-PCR. After 24-h incubation, ANG II-induced AQP2 protein expression was observed at the concentration of 10(-10) M and increased in a dose-dependent manner. ANG II (10(-7) M) increased AQP2 protein expression and mRNA levels at 0.5, 1, 2, 6, and 24 h. Immunofluorescence studies showed that ANG II increased the apical membrane targeting of AQP2 from 30 min to 6 h. Next, the signaling pathways underlying the ANG II-induced AQP2 expression were investigated. The PKC inhibitor Ro 31-8220 (5 × 10(-6) M) and the PKA inhibitor H89 (10(-5) M) blocked ANG II-induced AQP2 expression, respectively. Calmodulin inhibitor W-7 markedly reduced ANG II- and/or dDAVP-stimulated AQP2 expression. ANG II (10(-9) M) and/or dDAVP (10(-10) M) stimulated AQP2 protein levels and cAMP accumulation, which was completely blocked by pretreatment with the vasopressin V2 receptor (V2R) antagonist SR121463B (10(-8) M). Pretreatment with the angiotensin AT(1) receptor (AT1R) antagonist losartan (3 × 10(-6) M) blocked ANG II (10(-9) M)-stimulated AQP2 protein expression and cAMP accumulation, and partially blocked dDAVP (10(-10) M)- and dDAVP+ANG II-induced AQP2 protein expression and cAMP accumulation. In conclusion, ANG II regulates AQP2 protein, trafficking, and gene expression in renal collecting duct principal cells. ANG II-induced AQP2 expression involves cAMP, PKC, PKA, and calmodulin signaling pathways via V2 and AT(1) receptors.  相似文献   

7.
8.
The role of prostaglandins (PGs) in the pressor response to norepinephrine (NE) was examined in one-kidney, one clip rabbits with renal artery stenosis for 3-day's duration (3-day clipped rabbits) and in sham operated rabbits with one-kidney without renal artery stenosis. An exaggerated pressor response to NE, 800 ng/kg/min, was observed in the 3-day clipped rabbits, and it was abolished by angiotensin II antagonist, [Sar1, Ile8] angiotensin II (AIIA). Treatment with indomethacin, 10 mg/kg, induced hyperresponsiveness to NE in the sham operated rabbits and also produced a further increase in the response in the 3-day clipped rabbits: the enhanced responses with similar levels were not attenuated by AIIA in both groups. A subdepressor dose of PGE2, 800 ng/kg/min, abolished the hyperresponsiveness in the 3-day clipped rabbits, while subdepressor or depressor dose of PGI2, 10 or 20 ng/kg/min did not, but the concurrent infusion of AIIA with PGI2 attenuated it. These results indicate that PGs, in particular PGE2 might be involved in the enhanced pressor response to NE in the 3-day clipped rabbits in addition to the altered renin-angiotensin system.  相似文献   

9.
We had previously established that in a model of Ang II-induced hypertension, administration of an anti-TNF-alpha antibody caused additional increases in mean arterial pressure. Production of vasodilator prostanoids (i.e. PGI2 and PGE2) is increased by Ang II in vascular smooth muscle and is part of a counter-regulatory mechanism that opposes increases in vascular tone. We, therefore, examined the effects of TNF-alpha on Ang II-induced increases in PGI2 production in vascular smooth muscle cells (VSMC). Addition of Ang II caused an increase in the production of PGI2, while addition of TNF-alpha had no effect. However, pretreatment with TNF-alpha potentiated the stimulatory effects of Ang II. The potentiating effect of TNF-alpha was neither at the level of prostacyclin synthetase nor at the level of acyl hydrolase activity. This potentiation was dependent on tyrosine kinase activity, as preincubation with genistein completely abolished the effect of TNF-alpha. TNF-alpha upregulated AA-induced PGI2 synthesis, indicating that the effect of TNF-alpha is at the level of cyclooxygenase (COX). These data suggest that TNF-alpha potentiates Ang II-induced synthesis of PGI2 and PGE2 in a tyrosine kinase-dependent manner, an effect that may contribute to the counter-regulatory influence of prostaglandins on the pressor effects of Ang II in the vasculature.  相似文献   

10.
Ca2+ channels are involved in the regulation of vascular functions. Angiotensin II is implicated in the development of atherosclerosis and vascular remodeling. In this study, we demonstrated that angiotensin II preferentially increased the expression of alpha1G, a T-type Ca2+ channel subunit, via AT1 receptors in endothelial cells. Angiotensin II-induced expression of alpha1G was inhibited by pretreatment with atorvastatin and the MEK1/2 inhibitor, PD98059. The effect of atorvastatin was reversed by mevalonate and farnesyl pyrophosphate which implicates the activation of the small GTP-binding protein, Ras. Our data indicate that angiotensin II induces alpha1G expression in endothelial cells via AT1 receptors, Ras and MEK. Angiotensin II-induced migration of endothelial cells in a wound healing model was inhibited by incubation with mibefradil, a T-type Ca2+ channel blocker. Our data indicate that angiotensin II induces T-type Ca2+ channels in endothelial cells, which may play a role in the development of vascular disorders.  相似文献   

11.
Long-term pretreatment of rat mesangial cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulated protein kinase C activity and potentiated the angiotensin II-induced inositol trisphosphate (InsP3) formation. This increased response to angiotensin II occurred without a significant change in the receptor number or Kd value of angiotensin II binding to the cells. The biologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate was without effect on angiotensin II-stimulated InsP3 generation. Long-term pretreatment with TPA also increased the angiotensin II-induced mobilization of Ca2+ and the subsequent contraction of mesangial cells.  相似文献   

12.
K Bj?ro 《Prostaglandins》1986,31(4):699-714
The formation of prostacyclin (PGI2) and thromboxane A2 (TXA2) (measured as the stable metabolites 6-keto-PGF1 alpha and TXB2) during stimulation with vasoactive autacoids was registered in human umbilical arteries perfused in vitro. Responses were registered within 3-4 minutes after addition of the substances. Both angiotensin I and II were found to increase the formation of PGI2 while depressing that of TXA2. Serotonin increased the formation of TXA2 but not that of PGI2. Both PGE2 and PGF2 alpha stimulated the PGI2 formation. The TXA2 mimetic U46619, increased PGI2 production, whereas PGI2 slightly increased the formation of TXA2. All responses were found to be completely inhibited by indomethacin.  相似文献   

13.
In the preceding paper (Kawai, H. et al. (1992) Biochim. Biophys. Acta 1133, 172-178), we reported that in mastocytoma P-815 cells dexamethasone and 12-O-tetradecanoylphorbol-13-acetate (TPA) synergistically enhanced the de novo synthesis of L-histidine decarboxylase (HDC). Here we found that Ca2+ acted synergistically with cAMP in the induction of HDC mRNA and HDC activity in mastocytoma P-815 cells, and that the mechanism underlying the enzyme induction by Ca2+ plus cAMP was distinguishable from that by dexamethasone plus TPA. Ca2+ ionophore A23187, itself having no significant activity, markedly enhanced the induction of HDC activity by N6,O2'-dibutyryl cAMP (db cAMP) or cAMP-inducible prostaglandins such as PGE1, PGE2 and PGI2 in the presence of the phosphodiesterase inhibitor, Ro201724. However, A23187 had little effect on increases in HDC activity induced by other known stimulants, such as TPA, dexamethasone and sodium butyrate. These results suggest that A23187 has a specific effect on the induction of HDC activity due to an increased level of cAMP. The finding that both A23187 and cAMP enhanced HDC activity suggests that both Ca2+/calmodulin and cyclic nucleotide dependent protein kinase play essential roles in the process of enhancement of HDC activity. To examine this possibility, we studied the effects of W-7, an inhibitor of calmodulin, removal of extracellular Ca2+, and H-8, an inhibitor of cAMP-dependent protein kinase, on the enhancing activity of A23187 plus db cAMP. The enhancement of HDC activity by A23187 plus db cAMP was inhibited by W-7, removal of extracellular Ca2+, and H-8. The increase in HDC activity was due to the de novo synthesis of the enzyme, since it was suppressed by the addition of cycloheximide or actinomycin D, and was well correlated with the marked accumulation of a 2.7 kilobase HDC mRNA. Furthermore, the mechanism underlying the induction of HDC by db cAMP plus A23187 is distinguishable from that in the case of dexamethasone plus TPA, since preexposure to dexamethasone plus TPA for 12 h, for a plateau level to be reached, did not affect the subsequent increase in HDC activity due to db cAMP plus A23187.  相似文献   

14.
The interaction of prostaglandin (PG) with the vascular renin-angiotensin (R-A) system was examined by studies on the effects of PGI2, PGE2 and the inhibitor of PG synthesis, indomethacin, on the release of angiotensin II (Ang II) from isolated rat mesenteric arteries. The Ang II released from the vasculature was measured after its concentration in a Sep-Pak C18 cartridge connected to the perfusion system. After perfusion with drugs, the specific vascular renin activity inhibited by anti-renin antibody was determined. The basal perfusion pressure was constant (19.6 +/- 1.1 mmHg) at a flow rate of 4.5 ml/min, and was not changed by any of these drugs. The basal levels of Ang II release and vascular renin activity were 44 +/- 5 pg/30 min and 113 +/- 8 pg Ang I/mg protein/hr, respectively. Infusion of PGI2 (10(-6) M) significantly decreased both Ang II release (p less than 0.01) and vascular renin activity (p less than 0.05) as compared with the control levels. Infusion of PGE2 (10(-6) M) decreased Ang II release significantly (p less than 0.05) and vascular renin activity slightly. Infusion of indomethacin (10(-6)M) increased vascular renin activity significantly (p less than 0.01). Pretreatment with indomethacin (10 mg/kg, ip) for 2 days also increased vascular renin activity (p less than 0.01). These results indicate that in contrast to their effects on the renal R-A system, PGs suppress the vascular R-A system and that these two local vasoactive factors interact to regulate vascular tone.  相似文献   

15.
Angiotensin II-induced activation of aldosterone secretion in adrenal glomerulosa cells is mediated by an increase of intracellular calcium. We describe here a new Ca2+-regulatory pathway involving the inhibition by angiotensin II of calcium extrusion through the Na+/Ca2+ exchanger. Caffeine reduced both the angiotensin II-induced calcium signal and aldosterone production in bovine glomerulosa cells. These effects were independent of cAMP or calcium release from intracellular stores. The calcium response to angiotensin II was more sensitive to caffeine than the response to potassium, suggesting that the drug interacts with a pathway specifically elicited by the hormone. In calcium-free medium, calcium returned more rapidly to basal levels after angiotensin II stimulation in the presence of caffeine. Thapsigargin had no effect on these kinetics, but diltiazem, which inhibits the Na+/Ca2+ exchanger, markedly reduced the rate of calcium decrease and abolished caffeine action. The involvement of this exchanger was supported by the effect of cell depolarization and of a reduction of extracellular sodium on the rate of calcium extrusion. We also determined the mechanism of angiotensin II action on the exchanger. Phorbol esters reduced the rate of calcium extrusion, which was increased by baicalein, an inhibitor of lipoxygenases, and by SB 203580, an inhibitor of the p38 MAPK. Finally, we showed that angiotensin II acutely activates, in a caffeine-sensitive manner, p38 MAPK in glomerulosa cells. In conclusion, in bovine glomerulosa cells, the Na+/Ca2+ exchanger plays a crucial role in extruding calcium, and, by reducing its activity, angiotensin II influences the amplitude of the calcium signal. The hormone exerts its action on the exchanger through a caffeine-sensitive pathway involving the p38 MAPK and lipoxygenase products.  相似文献   

16.
We tested whether the respective angiotensin type 1 (AT(1)) and 2 (AT(2)) receptor subtype antagonists losartan and PD-123319 could block the descending vasa recta (DVR) endothelial intracellular calcium concentration ([Ca(2+)](i)) suppression induced by ANG II. ANG II partially reversed the increase in [Ca(2+)](i) generated by cyclopiazonic acid (CPA; 10(-5) M), acetylcholine (ACh; 10(-5) M), or bradykinin (BK; 10(-7) M). Losartan (10(-5) M) blocked that effect. When vessels were treated with ANG II before stimulation with BK and ACh, concomitant AT(2) receptor blockade with PD-123319 (10(-8) M) augmented the suppression of endothelial [Ca(2+)](i) responses. Similarly, preactivation with the AT(2) receptor agonist CGP-42112A (10(-8) M) prevented AT(1) receptor stimulation with ANG II + PD-123319 from suppressing endothelial [Ca(2+)](i). In contrast to endothelial [Ca(2+)](i) suppression by ANG II, pericyte [Ca(2+)](i) exhibited typical peak and plateau [Ca(2+)](i) responses that were blocked by losartan but not PD-123319. DVR vasoconstriction by ANG II was augmented when AT(2) receptors were blocked with PD-123319. Similarly, AT(2) receptor stimulation with CGP-42112A delayed the onset of ANG II-induced constriction. PD-123319 alone (10(-5) M) showed no AT(1)-like action to constrict microperfused DVR or increase pericyte [Ca(2+)](i). We conclude that ANG II suppression of endothelial [Ca(2+)](i) and stimulation of pericyte [Ca(2+)](i) is mediated by AT(1) or AT(1)-like receptors. Furthermore, AT(2) receptor activation opposes ANG II-induced endothelial [Ca(2+)](i) suppression and abrogates ANG II-induced DVR vasoconstriction.  相似文献   

17.
In smooth-muscle cells (SMC) isolated from rat aorta, angiotensin II stimulates a phospholipase C with subsequent formation of inositol trisphosphate (InsP3). Short-term (10 min) pretreatment of SMC with 12-O-tetradecanoylphorbol 13-acetate (TPA; 100 nM) decreases the angiotensin II-induced InsP3 formation. However, this inhibition is not observed after incubating the cells for 2 h with TPA. Longer-term pretreatments even lead to an enhanced generation of InsP3. This increased response to angiotensin II occurs without a significant change in the receptor number or Kd value of angiotensin II binding to the cells. The biologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate was without effect on angiotensin II-stimulated InsP3 generation, irrespective of the time of preincubation. In parallel with this potentiation of angiotensin II-induced generation of InsP3 by TPA, a down-regulation of protein kinase C activity is observed. A 24 h pretreatment of SMC with TPA decreases protein kinase C activity to less than 10% of that of control cells. Longer-term pretreatment also increases the angiotensin II-induced release of Ca2+ and delays the decay of the transient Ca2+ increase. All these data suggest that protein kinase C exerts a negative feedback control on angiotensin II-stimulated polyphosphoinositide turnover, and that protein kinase C is an important factor in limiting the production of InsP3 in stimulated cells.  相似文献   

18.
Pressor doses of norepinephrine (NE) (n = 8) and angiotensin II (A II) (n = 5) were infused in normal volunteers to determine whether the systemic administration of vasopressor hormones influence renal eicosanoid production and whether, in turn, the eicosanoids produced could modulate renal hemodynamics and electrolyte excretion. At the doses administered, both pressor substances induced the expected rise in blood pressure, a significant decrease (P less than 0.05) in renal blood flow and a proportionally smaller fall in glomerular filtration rate, resulting in a consistent augmentation in filtration fraction. Fractional sodium excretion was concomitantly reduced. NE infusion produced only slight modifications in urinary prostaglandin (PG)E2, 2,3-dinor-6-keto-PGF1 alpha and thromboxane (TX)B2, while urinary 6-keto-PGF1 alpha and PGF2 alpha were increased by 38% and 176% respectively. The increase in urinary 6-keto-PGF1 alpha (the non-enzymatic degradation product of PGI2, predominantly of cortical origin) was proportional to the level of circulating NE (r = 0.78, P less than 0.05) and to the renal vascular resistance (r = 0.85, P less than 0.01), suggesting an immediate compensatory role for PGI2 in response to the NE-induced pressor stimulus. The renal production of PGE2 and PGF2 alpha (predominantly medullary) was inversely correlated with the filtration fraction: the greater the increase in PGE2 and PGF2 alpha the lower the elevation in filtration fraction or the decline in renal blood flow upon NE administration. All infusion variably stimulated the renal eicosanoid production: PGE2, 41%; PGF2 alpha, 102%; 6-keto-PGF1 alpha, 38%; 2,3-dinor-6-keto-PGF1 alpha, 38%; and TXB2, 25%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of prostaglandin E (PGE) on aldosterone release and the mechanism of action of PGE in mediating the release of aldosterone were studied using isolated rat glomerulosa cells. PGE1 stimulated aldosterone release in a dose-dependent fashion at concentrations between 10(-8) and 10(-6) M and caused approximately a two-fold increase over the basal aldosterone level at 10(-6) M. A significant and dose-dependent increase in cAMP production was also produced by PGE1 at concentrations greater than 10(-8) M. Aldosterone release induced by 10(-7) M or 10(-6) M PGE2 was significantly reduced by a competitive receptor blocking PG-antagonist, SC 19220 (10(-7) M), but not affected by (Sar1, Ileu8)-angiotensin-II (A-II), a competitive inhibitor of A-II. PGE-stimulated aldosterone release was almost completely abolished by depleting the extracellular Ca2+ by EGTA, or by verapamil, a Ca2+-channel blocker or W-7, a calmodulin inhibitor. These findings suggest that PGE stimulates aldosterone release through the membrane receptor binding and activation of adenylate cyclase and that Ca2+-calmodulin system plays an essential role in mediating the steroidogenic action of PGE in the adrenal glomerulosa cells. However, the physiological significance of PGE in the regulation of aldosterone secretion remains to be elucidated.  相似文献   

20.
The mas oncogene/angiotensin II receptor was subcloned into a mammalian expression vector pCDM8 and used to transiently transfect monkey kidney derived COS-7 cells. As a result, the mas transfected COS-7 cells expressed a functional angiotensin II receptor capable of transducing an increase in intracellular Ca2+ following stimulation with angiotensin II. The angiotensin II stimulated changes in Ca2+ could be measured 24 hours after transfection in both a fluorimeter and a fluorescence activated cell sorter. These results describe a rapid method for the functional analysis of the 7-transmembrane domain receptor genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号