首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA in the nucleosome   总被引:13,自引:0,他引:13  
R H Morse  R T Simpson 《Cell》1988,54(3):285-287
  相似文献   

2.
Flaus A  Owen-Hughes T 《Biopolymers》2003,68(4):563-578
Nucleosomes are the ubiquitous and fundamental packaging for eukaryotic genomes, and are the substrate for many processes in the nucleus. Nucleosomes are not static entities but can readily be moved by thermal energy and ATP-dependent chromatin remodeling complexes in a process known as sliding or shifting. We summarize from a mechanical perspective the twist defect and bulge diffusion mechanisms proposed as the most likely pathway for nucleosome mobilization. We then consider the elastic properties of DNA and how this affects the potential for each mechanism, concentrating on kinetic aspects of twist diffusion and possible planar bulge sizes and summarize the experimental evidence reflecting on each. Either, or both, mechanisms could occur, and careful experimentation focusing on their uniquely distinguishing features will be required to determine their relative contributions to chromatin dynamics.  相似文献   

3.
Liu H  Wu J  Xie J  Yang X  Lu Z  Sun X 《Biophysical journal》2008,94(12):4597-4604
By analyzing dinucleotide position-frequency data of yeast nucleosome-bound DNA sequences, dinucleotide periodicities of core DNA sequences were investigated. Within frequency domains, weakly bound dinucleotides (AA, AT, and the combinations AA-TT-TA and AA-TT-TA-AT) present doublet peaks in a periodicity range of 10-11 bp, and strongly bound dinucleotides present a single peak. A time-frequency analysis, based on wavelet transformation, indicated that weakly bound dinucleotides of core DNA sequences were spaced smaller (∼10.3 bp) at the two ends, with larger (∼11.1 bp) spacing in the middle section. The finding was supported by DNA curvature and was prevalent in all core DNA sequences. Therefore, three approaches were developed to predict nucleosome positions. After analyzing a 2200-bp DNA sequence, results indicated that the predictions were feasible; areas near protein-DNA binding sites resulted in periodicity profiles with irregular signals. The effects of five dinucleotide patterns were evaluated, indicating that the AA-TT pattern exhibited better performance. A chromosome-scale prediction demonstrated that periodicity profiles perform better than previously described, with up to 59% accuracy. Based on predictions, nucleosome distributions near the beginning and end of open reading frames were analyzed. Results indicated that the majority of open reading frames’ start and end sites were occupied by nucleosomes.  相似文献   

4.
RSC and SWI/SNF chromatin-remodeling complexes were previously reported to generate a stably altered nucleosome. We now describe the formation of hybrids between nucleosomes of different sizes, showing that the stably altered structure is a noncovalent dimer. A basis for dimer formation is suggested by an effect of RSC on the supercoiling of closed, circular arrays of nucleosomes. The effect may be explained by the interaction of RSC with DNA at the ends of the nucleosome, which could lead to the release 60--80 bp or more from the ends. DNA released in this way may be trapped in the stable dimer or lead to alternative fates such as histone octamer transfer to another DNA or sliding along the same DNA molecule.  相似文献   

5.
6.
7.
8.
9.
Phylogenomics of the nucleosome   总被引:23,自引:0,他引:23  
Histones are best known as the architectural proteins that package the DNA of eukaryotic organisms, forming octameric nucleosome cores that the double helix wraps tightly around. Although histones have traditionally been viewed as slowly evolving scaffold proteins that lack diversification beyond their abundant tail modifications, recent studies have revealed that variant histones have evolved for diverse functions. H2A and H3 variants have diversified to assume roles in epigenetic silencing, gene expression and centromere function. Such diversification of histone variants and 'deviants' contradicts the perception of histones as monotonous members of multigene families that indiscriminately package and compact the genome. How these diverse functions have evolved from ancestral forms can be addressed by applying phylogenetic tools to increasingly abundant sequence data.  相似文献   

10.
Eukaryotes have evolved a specific strategy to package DNA. The nucleosome is a 147-base-pair DNA segment wrapped around histone core proteins that plays important roles regulating DNA-dependent biosynthesis and gene expression. Chromatin remodeling complexes (RSC, Remodel the Structure of Chromatin) hydrolyze ATP to perturb DNA-histone contacts, leading to nucleosome sliding and ejection. Here, we utilized tethered particle motion (TPM) experiments to investigate the mechanism of RSC-mediated nucleosome remodeling in detail. We observed ATP-dependent RSC-mediated DNA looping and nucleosome ejection along individual mononucleosomes and dinucleosomes. We found that nucleosome assembly protein 1 (Nap1) enhanced RSC-mediated nucleosome ejection in a two-step disassembly manner from dinucleosomes but not from mononucleosomes. Based on this work, we provide an entire reaction scheme for the RSC-mediated nucleosome remodeling process that includes DNA looping, nucleosome ejection, the influence of adjacent nucleosomes, and the coordinated action between Nap1 and RSC.  相似文献   

11.
The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought.  相似文献   

12.
13.
14.
Among the multiple effects involved in chromatin condensation and decondensation processes, interactions between nucleosome core particles are suspected to play a crucial role. We analyze them in the absence of linker DNA and added proteins, after the self-assembly of isolated nucleosome core particles under controlled ionic conditions. We describe an original lamellar mesophase forming tubules on the mesoscopic scale. High resolution imaging of cryosections of vitrified samples reveals how nucleosome core particles stack on top of one another into columns which themselves align to form bilayers that repel one another through a solvent layer. We deduce from this structural organization how the particles interact through attractive interactions between top and bottom faces and lateral polar interactions that originate in the heterogeneous charge distribution at the surface of the particle. These interactions, at work under conditions comparable with those found in the living cell, should be of importance in the mechanisms governing chromatin compaction in vivo.  相似文献   

15.
Epigenetic consequences of nucleosome dynamics   总被引:20,自引:0,他引:20  
Ahmad K  Henikoff S 《Cell》2002,110(3):281-284
  相似文献   

16.
17.
What controls nucleosome positions?   总被引:2,自引:0,他引:2  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号