首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desorption electrospray ionization (DESI) allows the direct analysis of ordinary objects or pre-processed samples under ambient conditions. Among other applications, DESI is used to identify and record spatial distributions of lipids and drug molecules in biological tissue sections. This technique does not require sample preparation other than production of microtome tissue slices and does not involve the use of ionization matrices. This greatly simplifies the procedure and prevents the redistribution of analytes during matrix deposition. Images are obtained by continuously moving the sample relative to the DESI sprayer and the inlet of the mass spectrometer. The timing of the protocol depends on the size of the surface to be analyzed and on the desired resolution. Analysis of organ tissue slices at 250 microm resolution typically takes between 30 min and 2 h.  相似文献   

2.
The main phospholipids in rat peritoneal surface layer were analyzed by normal-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) ion-trap mass spectrometry (MS). By using a silica gel column and a gradient of hexane/isopropanol/water as mobile phase containing 5 mmol/L ammonium formate as modifiers, a baseline separation of glycerophosphoehtanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC), sphingomyelin (SM) and lyso-phosphatidylcholine (LPC) was obtained and more than 90 phospholipid constituents in rat peritoneal surface were identified and determined by on-line ion-trap MS detection. The major ethanolamine glycerophospholipids in rat peritoneal surfaces were plasmalogens that were highly enriched in polyunsaturated fatty acids at the sn-2 position. In addition, the fragmentation patterns for each phospholipid class by the ion-trap MS were discussed.  相似文献   

3.
The applicability of electrospray ionization (ESI) mass spectrometry to protein analyses has been studied. The molecular weight of hen egg lysozyme (HEL) was determined with an accuracy of +/- 2 u. The choice of solvents and additives in sample preparations was important to achieve high sensitivity as well as high precision of molecular weight measurements.  相似文献   

4.
Recent advances in electrospray ionisation mass spectrometry (ESI-MS) have greatly facilitated the analysis of phospholipid molecular species in a growing diversity of biological and clinical settings. The combination of ESI-MS and metabolic labelling employing substrates labelled with stable isotopes is especially exciting, permitting studies of phospholipid synthesis and turnover in vivo. This review will first describe the methodology involved and will then detail dynamic lipidomic studies that have applied the stable isotope incorporation approach. Finally, it will summarise the increasing number of studies that have used ESI-MS to characterise structural and signalling phospholipid molecular species in development and disease.  相似文献   

5.
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of triacylglycerides (TAG) directly from chloroform extracts of biological samples. Previous attempts at direct TAG quantitation by positive-ion electrospray ionization mass spectrometry (ESI/MS) were confounded by the presence of overlapping peaks from choline glycerophospholipids requiring chromatographic separation of lipid extracts prior to ESI/MS analyses. By exploiting the rapid loss of phosphocholine from choline glycerophospholipids, in conjunction with neutral-loss scanning for individual fatty acids, overlapping peaks in the ESI mass spectrum were deconvoluted generating a detailed molecular species fingerprint of individual TAG molecular species directly from chloroform extracts of biological samples. This method readily detects as little as 0.1 pmol of each TAG molecular species from chloroform extracts and is linear over a 1000-fold dynamic range. The sensitivity of individual TAG molecular species to ESI/MS/MS analyses correlated with the unsaturation index and inversely correlated with total aliphatic chain length of TAG. An algorithm was developed which identifies sensitivity factors, thereby allowing the rapid quantitation and molecular species fingerprinting of TAG molecular species directly from chloroform extracts of biological samples.  相似文献   

6.
Sphingosine (SPH) comprises the backbone of sphingolipids and is known as a second messenger involved in the modulation of cell growth, differentiation, and apoptosis. The currently available methods for the quantification of SPH are, in part, complicated, time-consuming, insensitive, or unselective. Therefore, a fast and convenient methodology for the quantification of SPH and the biosynthetic intermediate sphinganine (SPA) was developed. The method is based on an HPLC separation coupled to electrospray ionization tandem mass spectrometry (MS/MS). Quantitation is achieved by the use of a constant concentration of a non-naturally occurring internal standard, 17-carbon chain SPH (C17-SPH), together with a calibration curve established by spiking different concentrations of naturally occurring sphingoid bases. SPH and SPA coeluted with C17-SPH, which allows an accurate correction of the analyte response. Interference of the SPH+2 isotope with SPA quantification was corrected by an experimentally determined factor. The limits of detection were 9 fmol for SPH and 21 fmol for SPA. The overall coefficients of variation were 8% and 13% for SPH and SPA, respectively. The developed HPLC-tandem mass spectrometry methodology, with an analysis time of 3.5 min, simple sample preparation, and automated data analysis, allows high-throughput quantification of sphingoid bases from crude lipid extracts and is a valuable tool for studies of cellular sphingolipid metabolism and signaling.  相似文献   

7.
Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.  相似文献   

8.
Electrospray ionization mass spectrometry has previously been used to probe qualitative changes in the phospholipid cardiolipin (CL), but it has rarely been used in a quantitative manner. We assessed changes in the amount of individual molecular species of cardiac CL present in a model of congestive heart failure using 1,1',2,2'-tetramyristoyl cardiolipin as an internal standard. There was a linear relationship between the ratio of the negative molecular ion ([M-H]-) current from four different CL reference standards and the [M-H]- from the internal standard, as a function of the concentration of CL molecular species. Therefore, this internal standard can be used to quantitate many naturally occurring CL molecular species over a wide range of CL concentrations. Using this method, changes to individual molecular species of CL in failing hearts from male spontaneously hypertensive heart failure rats were examined. CL isolated from cardiac mitochondria was compared with left ventricular tissue to demonstrate the feasibility of extracting and quantitating CL from either mitochondrial or tissue samples. The acyl chain composition of individual CL molecular species was identified using tandem mass spectrometry. In animals with heart failure, the major cardiac CL species (tetralinoloyl) decreased significantly, whereas other minor CL species were significantly increased.  相似文献   

9.
A method is described using desorption electrospray ionization (DESI) mass spectrometry (MS) to obtain phospholipid mass spectral profiles from crude lung tissue extracts. The measured DESI mass spectral lipid fingerprints were then analyzed by unsupervised learning principal components analysis (PCA). This combined approach was used to differentiate the effect(s) of two vaccination routes on lipid composition in mouse lungs. Specifically, the two vaccination routes compared were intranasal (i.n.) and intradermal (i.d.) inoculation of the Francisella tularensis live vaccine strain (Ft–LVS). Lung samples of control and LVS-inoculated mice were quickly extracted with a methanol/chloroform solution, and the crude extract was directly analyzed by DESI–MS, with a total turnaround time of less than 10 min/sample. All of the measured DESI mass spectra (in both positive and negative ion mode) were compared via PCA, resulting in clear differentiation of mass spectral profiles of i.n.-inoculated mouse lung tissues from those of i.d.-inoculated and control mouse lung tissues. Lipid biomarkers responsible for sample differentiation were identified via tandem MS (MS/MS) measurements or by comparison with mass spectra of lipid standards. The DESI–MS approach described here provided a practical and rapid means to analyze tissue samples without extensive extractions and solvent changes.  相似文献   

10.
Ceramide (CER) is an important signaling molecule involved in a variety of cellular processes, including differentiation, cell growth, and apoptosis. Currently, different techniques are applied for CER quantitation, some of which are relatively insensitive and/or time consuming. Tandem mass spectrometry with its high selectivity and sensitivity is a very useful technique for detection of low abundant metabolites without prior purification or derivatization. In contrast to existing mass spectrometry methods, the developed electrospray tandem mass spectrometry (ESI-MS/MS) technique is capable of quantifying different CER species from crude cellular lipid extracts. The ESI-MS/MS is performed with a continuous flow injection and the use of an autosampler, resulting in a high throughput capability. The collision-induced fragmentation of CER produced, in addition to others, a characteristic fragment of m/z 264, making a precursor ion scan of 264 well suited for CER quantitation. Quantitation is achieved by use of a constant concentration of a non-naturally occurring internal standard C8-CER, together with a calibration curve established by spiking different concentrations of naturally occurring CER. The calibration curves showed linearity over a wide concentration range and sample volumes equivalent to 10 microg of cell protein corresponding to about 20, 000 fibroblasts were sufficient for CER analysis. Moreover this assay showed a detection limit at the subpicomole level. In summary, this methodology enables accurate and rapid analysis of CER from small samples without prior separation steps, thus providing a useful tool for signal transduction research.  相似文献   

11.
Desorption electrospray ionization (DESI) was utilized to monitor the presence of targeted central carbon metabolites within bacterial cell extracts and the quench supernatant of Escherichia coli. The targeted metabolites were identified through tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation in the negative ion mode. Picogram detection limits were achieved for a majority of the metabolites during MS/MS analysis of standard metabolite solutions. In a [U-(13)C]glucose pulse experiment, where uniformly labeled glucose was fed to E. coli, the corresponding fragment ions from labeled metabolites in extracts were generally observed. There was evidence of matrix effects including moderate suppression by other metabolites within the spectra of the labeled and unlabeled extracts. To improve the specificity and sensitivity of detection, optimized in situ ambient chemical reactions using DESI and extractive electrospray ionization (EESI) were carried out for targeted compounds. This study provides the first indication of the potential to perform in situ targeted metabolomics of a bacterial sample via ambient ionization mass spectrometry.  相似文献   

12.
A rapid, simple, and reliable method has been developed for the characterization and quantitation of ceramide molecular species directly from chloroform extracts of biological samples by electrospray ionization tandem mass spectrometry (ESI/MS/MS). By exploiting the differential fragmentation patterns of deprotonated ceramide ions, individual 2-hydroxy and nonhydroxy ceramide molecular species were readily identified by ESI/MS/MS with the neutral loss of fragments of mass 256.2 and 327.3 which correspond to sphingosine derivatives. The ions generated from the neutral loss of 256.2 (i.e., [M - H - 256.2](-)) are unique for ceramides with N-acyl sphingosine with the 18-carbon homolog. However, the sensitivity for nonhydroxy ceramides in ESI/MS/MS with the neutral loss of 256.2 is approximately threefold higher than that for 2-hydroxy ceramides. The ions resulting from the neutral loss of 327.3 (i.e., [M - H - 327.3](-)) are specific for 2-hydroxy ceramides. Additionally, all ceramides including both 2-hydroxy and nonhydroxy forms can be confirmed and accurately quantitated by ESI/MS/MS with the neutral loss of 240.2 after correction for (13)C isotope factors. This methodology demonstrated a 1000-fold linear dynamic range and a detection limit at the subfemtomole range and was applied to directly quantitate ceramide molecular species in chloroform extracts of biological samples including brain tissues and cell cultures.  相似文献   

13.
El-Hawiet A  Kitova EN  Klassen JS 《Biochemistry》2012,51(21):4244-4253
The development of analytical methods capable of characterizing carbohydrate-protein interactions, which are critical for many biological processes, represents an active area of research. Recently, the direct electrospray ionization mass spectrometry (ESI-MS) assay has emerged as a valuable tool for identifying and quantifying carbohydrate-protein complexes in vitro. The assay boasts a number of strengths, including its simplicity, speed, low level of sample consumption, and the unique ability to directly probe binding stoichiometry and to measure multiple binding equilibria simultaneously. Here, we describe the implementation of the direct ESI-MS assay for the determination of carbohydrate-protein binding stoichiometries and affinities. Common sources of error encountered with direct ESI-MS analysis of carbohydrate-protein interactions are identified along with strategies for minimizing their effects. The application of ESI-MS and a catch-and-release strategy for carbohydrate library screening are also described. The utility of the direct ESI-MS assay can be extended by combining the technique with competitive protein or ligand binding. An overview of these "indirect" ESI-MS methods is given, as well as examples of recent applications.  相似文献   

14.
A narrow-bore normal-phase high-performance liquid chromatography (HPLC) method was developed for separation of phospholipid classes in human blood. The separation was obtained using an HPLC diol column and a gradient of chloroform and methanol with 0.1% formic acid, titrated to pH 5.3 with ammonia and added 0.05% triethylamine. The HPLC system was coupled on-line with an electrospray ionisation ion-trap mass spectrometer. Chromatographic baseline separation was obtained between phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, lyso-phosphatidylcholine, phosphatidylinositol and phosphatidylserine, eluting in that order. The total run time was 30 min. Plasmalogen phosphatidylethanolamine and sphingomyelin, which both are substances with structural similarities to the glycerophospholipids, had similar retention time as phosphatidylethanolamine, but were well separated from the other glycerophospholipid classes. The species from each class were identified using MS2 or MS3, which forms characteristic lyso-fragments. The combination of lyso-fragment mass, molecular ion and chromatographic retention time was used to identify each species, including 20 species of phosphatidylglycerol. The mass spectra obtained for the phospholipid classes are presented. Using this system 17 disaturated phospholipid species not earlier described to be present in blood were identified. The limit of detection varied between different phospholipid classes and was in the range 0.1–5 ng of injected substance.  相似文献   

15.
Many different classes of phospholipids were identified from crude extracts of hearts by three soft ionization mass spectrometric techniques: liquid matrix secondary ion mass spectrometry in the negative mode, (-)LSIMS, and in the positive mode, (+)LSIMS, and field desorption. (-)LSIMS and (+)LSIMS are complementary methods. In some cases it was possible to establish the fatty acid and aldehyde composition and position of some phospholipid classes, by the analysis of fragments.  相似文献   

16.
Lipoproteins are of fundamental importance for the lipid transport and cardiovascular disease. The function and metabolism of lipoproteins is intimately linked to the biophysical properties of their surface lipids. Although a number of disease associations were found for lipid species in plasma, only a few studies reported lipid profiles of lipoproteins. Here, we provide an overview of techniques for lipoprotein separation, methods for lipid species analysis based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) as well as data from recent lipidomic studies on lipoprotein fractions. We also discuss the different analytical strategies and how lipid profiling can expand our understanding of the biology and structures of lipoproteins.  相似文献   

17.
We present an optimized and validated liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the simultaneous measurement of concentrations of different ceramide species in biological samples. The method of analysis of tissue samples is based on Bligh and Dyer extraction, reverse-phase high-performance liquid chromatography separation, and multiple reaction monitoring of ceramides. Preparation of plasma samples also requires isolation of sphingolipids by silica gel column chromatography prior to LC-ESI-MS/MS analysis. The limits of quantification were in a range of 0.01-0.50 ng/ml for distinct ceramides. The method was reliable for inter- and intraassay precision, accuracy, and linearity. Recoveries of ceramide subspecies from human plasma, rat liver, and muscle tissue were 78 to 91%, 70 to 99%, and 71 to 95%, respectively. The separation and quantification of several endogenous long-chain and very-long-chain ceramides using two nonphysiological odd chain ceramide (C17 and C25) internal standards was achieved within a single 21-min chromatographic run. The technique was applied to quantify distinct ceramide species in different rat tissues (muscle, liver, and heart) and in human plasma. Using this analytical technique, we demonstrated that a clinical exercise training intervention reduces the levels of ceramides in plasma of obese adults. This technique could be extended for quantification of other ceramides and sphingolipids with no significant modification.  相似文献   

18.
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.  相似文献   

19.
Smirnova J  Muhhina J  Tõugu V  Palumaa P 《Biochemistry》2012,51(29):5851-5859
Insulin-like growth factor 1 (IGF-1) is a 70-residue hormone containing three intramolecular disulfide bridges. IGF-1 and other growth factors are oxidatively folded in the endoplasmic reticulum and act primarily in the blood, under relatively oxidative conditions. It is known that IGF-1 exists in various intracellular and extracellular compartments in the oxidized form; however, the reduction potential of IGF-1 and the ability of fully reduced IGF-1, which contains six cysteine residues, to bind transition metal ions are not known. In this work, we determine that the redox potential of human IGF-1 is equal to -332 mV and the reduced form of hIGF-1 can bind cooperatively four Cu(+) ions, most probably into a tetracopper-hexathiolate cluster. The Cu(+) binding affinity of hIGF-1 is, however, approximately 3 times lower than that for the copper chaperones; thus, we can conclude that fully reduced hIGF-1 cannot compete with known Cu(+)-binding proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号