首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histidine operon of Salmonella typhimurium and its fragments were cloned in Escherichia coli cells on a multicopy plasmid. Expression of the cloned genes and histidine production by the variants possessing the hisG mutation which desensibilizes the ATP phosphoribosyl transferase for histidine were studied. Amplification of the complete operon including the hisG gene enables histidine accumulation of 2-3 g/l after 72 hours of fermentation.  相似文献   

2.
F'-episomes carrying the Salmonella typhimurium wild-type or attenuator-deleted histidine (his) operons were introduced into Escherichia coli strains containing relA or spoT single and double mutations known to affect guanosine 3'-diphosphate 5'-diphosphate (ppGpp) and guanosine 3'-triphosphate 5'-diphosphate (pppGpp) levels. Expression of the his operon and expression of the gene for 6-phosphogluconate dehydrogenase (gnd) were measured during balanced growth in amino acid-rich and minimal media. The data were consistent with the interpretation that ppGpp is a positive effector of his operon expression, whereas pppGpp is not an essential effector. The conclusion that his operon expression is maximally stimulated at a lower than maximum intracellular ppGpp concentration was further confirmed. Neither ppGpp nor pppGpp appeared to influence gnd gene expression. The metabolic regulation of the E. coli his operon was found to be similar to the ppGpp-meidated metabolic regulation of the S. typhimurium his operon.  相似文献   

3.
The Escherichia coli, strain possessing purF, deoD and add mutations converts exogenous adenine into guanine nucleotides exclusively by the pathway coupled with histidine biosynthesis. When grown on adenine, this strain demonstrated sensitivity to histidine, thus making it possible to select histidine-resistant hisGR mutants with ATP-phosphoribosyltransferase desensibilized for histidine. The hisGR mutations were obtained in two his operons introduced into the his operon-sensitive E. coli strain: his operon of Salmonella typhimurium incorporated in DNA and his operon of E. coli on the F'episome. In both cases, the hisGR mutants obtained were shown to excrete histidine.  相似文献   

4.
Mutations in the ack (acetate kinase) and pta (phosphotransacetylase) genes in Salmonella typhimurium were characterized and determined to be analogous to those of previously described Escherichia coli mutants. We established that in both bacterial species these genes were cotransducible with the neighboring histidine transport operon and were distally located relative to purF. pta mutants were sensitive to the dye alizarin yellow and were unable to grow on medium containing inositol as a carbon source. We selected mutants of both species with deletions covering both the ack and the pta genes; some deletions extended into the histidine transport operon.  相似文献   

5.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

6.
7.
When Escherichia coli was incubated at the growth-refractory temperatures of 48 and 54 degrees C, expression of the cel operon was demonstrated by phospho-beta-glucosidase activity. This enzyme activity was also detected at the growth-refractory temperatures in Salmonella typhimurium and Pseudomonas aeruginosa. Thermotolerant and mesothermophilic mutants of E. coli, S. typhimurium, and P. aeruginosa, able to grow with generation times of 30 to 40 min at 48 and 54 degrees C, exhibited phospho-beta-glucosidase activity at their growth temperatures of 48 and 54 degrees C. Thus, the cel operon previously described as a cryptic operon in E. coli and S. typhimurium was found to be expressed at growth-refractory temperatures of the mesophilic parent and growth-permissive temperatures (48 and 54 degrees C) of the thermotolerant and mesothermophilic mutants.  相似文献   

8.
When Escherichia coli was incubated at the growth-refractory temperatures of 48 and 54 degrees C, expression of the cel operon was demonstrated by phospho-beta-glucosidase activity. This enzyme activity was also detected at the growth-refractory temperatures in Salmonella typhimurium and Pseudomonas aeruginosa. Thermotolerant and mesothermophilic mutants of E. coli, S. typhimurium, and P. aeruginosa, able to grow with generation times of 30 to 40 min at 48 and 54 degrees C, exhibited phospho-beta-glucosidase activity at their growth temperatures of 48 and 54 degrees C. Thus, the cel operon previously described as a cryptic operon in E. coli and S. typhimurium was found to be expressed at growth-refractory temperatures of the mesophilic parent and growth-permissive temperatures (48 and 54 degrees C) of the thermotolerant and mesothermophilic mutants.  相似文献   

9.
Identification of a umuDC locus in Salmonella typhimurium LT2.   总被引:9,自引:8,他引:1       下载免费PDF全文
The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV light and many other DNA-damaging agents. The existence of a umuDC analog in Salmonella typhimurium has been questioned. With DNA probes to the E. coli umuD and umuC genes, we detected, by Southern blot hybridization, sequences similar to both of these genes in S. typhimurium LT2. We also confirmed that the presence of cloned E. coli umuD enhances the UV mutability and resistance of S. typhimurium. Our data strongly suggest that S. typhimurium contains a functional umuDC operon.  相似文献   

10.
A Carlin  W Shi  S Dey    B P Rosen 《Journal of bacteriology》1995,177(4):981-986
The chromosomally encoded arsenical resistance (ars) operon subcloned into a multicopy plasmid was found to confer a moderate level of resistance to arsenite and antimonite in Escherichia coli. When the operon was deleted from the chromosome, the cells exhibited hypersensitivity to arsenite, antimonite, and arsenate. Expression of the ars genes was inducible by arsenite. By Southern hybridization, the operon was found in all strains of E. coli examined but not in Salmonella typhimurium, Pseudomonas aeruginosa, or Bacillus subtilis.  相似文献   

11.
Gene replacement and retrieval with recombinant M13mp bacteriophages.   总被引:27,自引:15,他引:12       下载免费PDF全文
We have developed an allele exchange system for shuttling sequences of DNA to and from their original chromosomal loci. Cloned segments of the histidine operon of Salmonella typhimurium and the lactose operon of Escherichia coli served as target sequences and were used to develop the system. Replacement and retrieval of target sequences used the phage M13mp vectors and proceeded through an M13 lysogen intermediate. The intermediates and products of allele exchange were characterized by genetic and hybridization analyses. Several unique properties of M13 lysogens were exploited to devise positive selections to detect integration and excision. These positive selections were used to manipulate phenotypically silent alleles.  相似文献   

12.
The deduced product of the Bacillus subtilis ytvP gene is similar to that of ORF13, a gene of unknown function in the Lactococcus lactis histidine biosynthesis operon. A B. subtilis ytvP mutant was auxotrophic for histidine. The only enzyme of the histidine biosynthesis pathway that remained uncharacterized in B. subtilis was histidinol phosphate phosphatase (HolPase), catalyzing the penultimate step of this pathway. HolPase activity could not be detected in crude extracts of the ytvP mutant, while purified glutathione S-transferase-YtvP fusion protein exhibited strong HolPase activity. These observations demonstrated that HolPase is encoded by ytvP in B. subtilis and led us to rename this gene hisJ. Together with the HolPase of Saccharomyces cerevisiae and the presumed HolPases of L. lactis and Schizosaccharomyces pombe, HisJ constitutes a family of related enzymes that are not homologous to the HolPases of Escherichia coli, Salmonella typhimurium, and Haemophilus influenzae.  相似文献   

13.
DNA damage-inducible loci in Salmonella typhimurium.   总被引:4,自引:3,他引:1       下载免费PDF全文
lac operon fusions to DNA damage-inducible (din) loci were generated in Salmonella typhimurium LT2. Many of these din fusions were efficiently repressed by cloned Escherichia coli LexA, while others were not; all required RecA for induction. Several din fusions exhibited strong inducibility and will be useful in developing an SOS induction assay in S. typhimurium to detect genotoxins.  相似文献   

14.
Crosses between an Escherichia coli Hfr trp strain and three Salmonella typhimurium F- trp strains produced some trp+ hybrids in which the tryptophan operon is composed of genes from both parental species.  相似文献   

15.
Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.  相似文献   

16.
We have isolated a series of nondefective phi80 specialized transducing phage which carry segments of the Salmonella typhimurium trp operon. These phage were obtained from a lysogenic derivative of a merozygote constructed by transferring an S. typhimurium trp episome into an Escherichia coli strain which lacks the normal phi80 attachment site. The deoxyribonucleic acid (DNA) from one such phage was purified and employed in DNA-ribonucleic acid (RNA) hybridization studies. The results obtained show that, under our hybridization conditions, heterologous hybridization is less efficient than homologous hybridization. It was also observed that not all S. typhimurium trp messenger RNA can readily anneal to E. coli trp operon DNA. Heterologous hybrids consisting of S. typhimurium trp messenger RNA and E. coli trp operon DNA were estimated to have a dissociation constant 10-fold larger than that of homologous hybrids.  相似文献   

17.
Operon Coordination in Different Bacterial Hosts   总被引:1,自引:1,他引:0       下载免费PDF全文
Coordination of gene expression in the lac operon was compared in Escherichia coli and Salmonella typhimurium as an approach to detecting possible differences in protein synthesis or membrane structure between organisms. Either a wild-type F' lac pro(AB) episome or the same episome with a polar mutation in one of the lac genes was introduced into pro(-) derivatives of the two strains of bacteria. Activity assays showed that the beta-galactosidase levels were only slightly lower in the S. typhimurium cells than in E. coli cells, whereas the transacetylase levels were significantly higher in S. typhimurium for all of the lac markers tested. Galactoside transport activities were always comparable in the two strains of bacteria; this latter result indicates that the cell envelopes of E. coli and S. typhimurium do not differ sufficiently to affect the membrane-associated lac transport system. It was found, however, that the specific transport activity is very sensitive to culture age in both bacteria, and decreases rapidly in cultures past the mid-exponential phase of growth.  相似文献   

18.
We have constructed a fine-structure genetic map of the maltose transport operon in Salmonella typhimurium. We have isolated mal mutants by using indicator plates, penicillin selection, or a proton suicide technique. Mutants were obtained as spontaneous events or were induced by chemical mutagenesis and transposon insertion. Tn10 and Mu d(lac Ap)1 insertion mutations were used to create deletions. Mutations were also obtained in a gene that is equivalent to lamB in Escherichia coli, which codes for the lambda bacteriophage receptor. The gene products in the mutants were characterized by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis and immunoblotting. Our data indicate that the location of this operon on the Salmonella chromosome as well as the gene order and its orientation are the same as those in E. coli. This map will be useful in studying the mechanism of periplasmic transport in S. typhimurium.  相似文献   

19.
An effort to find growth conditions leading to conditional regulation of the histidine operon of Salmonella typhimurium by the allosteric first enzyme of the pathway, adenosine triphosphate phosphoribosyltransferase (EC 2.4.2.17), is reported. A strain deleting the enzyme, TR3343, behaved simply and predictably under all growth conditions, whereas histidine auxotrophs containing active enzyme behaved in complicated ways dependent upon the location of the histidine pathway lesion. hisE strains derepressed the operon only one-half as much as TR3343 when grown on limiting histidine and a poor carbon source, but they also grew more slowly, probably as a result of high N1-(5-phospho-beta-D-ribosyl)-adenosine triphosphate levels in the cell. hisC strains exhibited oscillatory growth behavior and oscillatory histidine operon expression when grown on intermediate concentrations of the histidine precursor histidinol. This behavior probably was caused by synergistic in-phase variations in the histidine, purine nucleotide, and ppGpp pools of the cell. All of the growth and histidine operon expression effects associated with the presence of adenosine triphosphate phosphoribosyltransferase could be assigned to metabolic perturbation of the cell caused by unregulated enzymatic activity.  相似文献   

20.
The fis operon from Salmonella typhimurium has been cloned and sequenced, and the properties of Fis-deficient and Fis-constitutive strains were examined. The overall fis operon organization in S. typhimurium is the same as that in Escherichia coli, with the deduced Fis amino acid sequences being identical between both species. While the open reading frames upstream of fis have diverged slightly, the promoter regions between the two species are also identical between -49 and +94. Fis protein and mRNA levels fluctuated dramatically during the course of growth in batch cultures, peaking at approximately 40,000 dimers per cell in early exponential phase, and were undetectable after growth in stationary phase. fis autoregulation was less effective in S. typhimurium than that in E. coli, which can be correlated with the absence or reduced affinity of several Fis-binding sites in the S. typhimurium fis promoter region. Phenotypes of fis mutants include loss of Hin-mediated DNA inversion, cell filamentation, reduced growth rates in rich medium, and increased lag times when the mutants are subcultured after prolonged growth in stationary phase. On the other hand, cells constitutively expressing Fis exhibited normal logarithmic growth but showed a sharp reduction in survival during stationary phase. During the course of these studies, the sigma 28-dependent promoter within the hin-invertible segment that is responsible for fljB (H2) flagellin synthesis was precisely located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号