首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The Dickkopf (Dkk) family is composed of four main members (Dkk1–4), which typically regulate Wnt/β-catenin signaling. An exception is Dkk3, which does not affect Wnt/β-catenin signaling and whose function is poorly characterized. Here, we describe the Xenopus dkk3 homolog and characterize its expression and function during embryogenesis. Dkk3 is maternally expressed and zygotically in the cement gland, head mesenchyme, and heart. We show that depletion of Dkk3 in Xenopus embryos by Morpholino antisense oligonucleotides induces axial defects as a result of Spemann organizer and mesoderm inhibition. Dkk3 depletion leads to down-regulation of Activin/Nodal signaling by reducing levels of Smad4 protein. Dkk3 overexpression can rescue phenotypic effects resulting from overexpression of the Smad4 ubiquitin ligase Ectodermin. Furthermore, depletion of Dkk3 up-regulates FGF signaling, while Dkk3 overexpression reduces it. These results indicate that Dkk3 modulates FGF and Activin/Nodal signaling to regulate mesoderm induction during early Xenopus development.  相似文献   

2.
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.  相似文献   

3.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

4.
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.  相似文献   

5.
TGF-beta signaling is essential for development and proliferative homeostasis. During embryogenesis, maternal determinants act in concert with TGF-beta signals to form mesoderm and endoderm. In contrast, ectoderm specification requires the TGF-beta response to be attenuated, although the mechanisms by which this is achieved remain unknown. In a functional screen for ectoderm determinants, we have identified Ectodermin (Ecto). In Xenopus embryos, Ecto is essential for the specification of the ectoderm and acts by restricting the mesoderm-inducing activity of TGF-beta signals to the mesoderm and favoring neural induction. Ecto is a RING-type ubiquitin ligase for Smad4, a TGF-beta signal transducer. Depletion of Ecto in human cells enforces TGF-beta-induced cytostasis and, moreover, plays a causal role in limiting the antimitogenic effects of Smad4 in tumor cells. We propose that Ectodermin is a key switch in the control of TGF-beta gene responses during early embryonic development and cell proliferation.  相似文献   

6.
7.
Activin, Nodal, and Vg1, members of the transforming growth factor beta (TGFbeta) superfamily, transduce signal through type I receptors ALK4 or ALK7 and play important roles in mesoderm induction and patterning during vertebrate embryogenesis. However, the timing and magnitude of the ALK4/ALK7-mediated maternal TGFbeta signals are not clear. SB-431542 is identified as an inhibitor of the ALK4/ALK5/ALK7-mediated TGFbeta signals and its specificity in vertebrate embryos has not been reported. We demonstrate that SB-431542 is able to specifically and reproducibly block the Smad2/3-mediated TGFbeta signals in zebrafish embryo. Embryos exposed to SB-431542 exhibit various defects phenocopying Nodal-deficient mutants. SB-431542 treatments starting at different cell cycles before the midblastula transition lead to different degrees of developmental defects in mesoderm induction and patterning, suggesting that maternal TGFbeta signals are activated right after fertilization and required for mesoderm formation and patterning.  相似文献   

8.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.  相似文献   

9.
Nodal factors play crucial roles during embryogenesis of chordates. They have been implicated in a number of developmental processes, including mesoderm and endoderm formation and patterning of the embryo along the anterior-posterior and left-right axes. We have analyzed the function of the Nodal signaling pathway during the embryogenesis of the sea urchin, a non-chordate organism. We found that Nodal signaling plays a central role in axis specification in the sea urchin, but surprisingly, its first main role appears to be in ectoderm patterning and not in specification of the endoderm and mesoderm germ layers as in vertebrates. Starting at the early blastula stage, sea urchin nodal is expressed in the presumptive oral ectoderm where it controls the formation of the oral-aboral axis. A second conserved role for nodal signaling during vertebrate evolution is its involvement in the establishment of left-right asymmetries. Sea urchin larvae exhibit profound left-right asymmetry with the formation of the adult rudiment occurring only on the left side. We found that a nodal/lefty/pitx2 gene cassette regulates left-right asymmetry in the sea urchin but that intriguingly, the expression of these genes is reversed compared to vertebrates. We have shown that Nodal signals emitted from the right ectoderm of the larva regulate the asymmetrical morphogenesis of the coelomic pouches by inhibiting rudiment formation on the right side of the larva. This result shows that the mechanisms responsible for patterning the left-right axis are conserved in echinoderms and that this role for nodal is conserved among the deuterostomes. We will discuss the implications regarding the reference axes of the sea urchin and the ancestral function of the nodal gene in the last section of this review.  相似文献   

10.
We report the isolation and characterization of a new inhibitory Smad inXenopus,which we have designated asXenopusSmad7. Smad7 is present at fairly constant levels throughout early development and at blastula stages enriched in the ventral side of the animal hemisphere. The induction of mesoderm by TGF-β-like signals is mediated by receptor ALK-4 and we show that Smad7 blocks signaling of ALK-4 in a graded fashion: lower levels of Smad7 block activation of dorsal mesoderm genes and higher levels block all mesoderm genes expression. Smad7 is able to directly activate neural markers in explants in the absence of mesoderm or endoderm. This neural-inducing activity of Smad7 may be due to inhibition of BMP-4 signaling because Smad7 can also block BMP-4-mediated mesoderm induction. Thus, Smad7 acts as a potent inhibitor of mesoderm formation and also activates the default neural induction pathway.  相似文献   

11.
Derrière is a recently discovered member of the TGFbeta superfamily that can induce mesoderm in explant assays and is expressed at the right time and location to mediate mesoderm induction in response to VegT during Xenopus embryogenesis. We show that the ability of Derrière to induce dorsal or ventral mesoderm depends strictly on the location of expression and that a dominant-negative Derrière cleavage mutant completely blocks all mesoderm formation when ectopically expressed. This differs from the activity of similar Xnr2 cleavage mutant constructs, which are secreted and retain signaling activity. Additional analysis of mesoderm induction by Derrière and members of the Nodal family indicates that these molecules are involved in a mutual positive-feedback loop and antagonism of either one of the signals can reduce the other. Interaction between Derrière and members of the Nodal family is also shown to occur through the formation of heterodimeric ligands. Using an oocyte expression system we show direct interaction between the mature Derrière ligand and members of both the Nodal and BMP families. Taken together, these findings indicate that Derrière and Nodal proteins probably work cooperatively to induce mesoderm throughout the marginal zone during early Xenopus development.  相似文献   

12.
13.
Xu S  Cheng F  Liang J  Wu W  Zhang J 《PLoS biology》2012,10(3):e1001286
Dorsal-ventral specification in the amphibian embryo is controlled by β-catenin, whose activation in all dorsal cells is dependent on maternal Wnt11. However, it remains unknown whether other maternally secreted factors contribute to β-catenin activation in the dorsal ectoderm. Here, we show that maternal Xenopus Norrin (xNorrin) promotes anterior neural tissue formation in ventralized embryos. Conversely, when xNorrin function is inhibited, early canonical Wnt signaling in the dorsal ectoderm and the early expression of the zygotic neural inducers Chordin, Noggin, and Xnr3 are severely suppressed, causing the loss of anterior structures. In addition, xNorrin potently inhibits BMP- and Nodal/Activin-related functions through direct binding to the ligands. Moreover, a subset of Norrin mutants identified in humans with Norrie disease retain Wnt activation but show defective inhibition of Nodal/Activin-related signaling in mesoderm induction, suggesting that this disinhibition causes Norrie disease. Thus, xNorrin is an unusual molecule that acts on two major signaling pathways, Wnt and TGF-β, in opposite ways and is essential for early neuroectoderm specification.  相似文献   

14.
15.
Interactions between Nodal/Activin and Fibroblast growth factor (Fgf) signalling pathways have long been thought to play an important role in mesoderm formation. However, the molecular and cellular processes underlying these interactions have remained elusive. Here, we address the epistatic relationships between Nodal and Fgf pathways during early embryogenesis in zebrafish. First, we find that Fgf signalling is required downstream of Nodal signals for inducing the Nodal co-factor One-eyed-pinhead (Oep). Thus, Fgf is likely to be involved in the amplification and propagation of Nodal signalling during early embryonic stages. This could account for the previously described ability of Fgf to render cells competent to respond to Nodal/Activin signals. In addition, overexpression data shows that Fgf8 and Fgf3 can take part in this process. Second, combining zygotic mutations in ace/fgf8 and oep disrupts mesoderm formation, a phenotype that is not produced by either mutation alone and is consistent with our model of an interdependence of Fgf8 and Nodal pathways through the genetic regulation of the Nodal co-factor Oep and the cell propagation of Nodal signalling. Moreover, mesodermal cell populations are affected differentially by double loss-of-function of Zoep;ace. Most of the dorsal mesoderm undergoes massive cell death by the end of gastrulation, in contrast to either single-mutant phenotype. However, some mesoderm cells are still able to undergo myogenic differentiation in the anterior trunk of Zoep;ace embryos, revealing a morphological transition at the level of somites 6-8. Further decreasing Oep levels by removing maternal oep products aggravates the mesodermal defects in double mutants by disrupting the fate of the entire mesoderm. Together, these results demonstrate synergy between oep and fgf8 that operates with regional differences and is involved in the induction, maintenance, movement and survival of mesodermal cell populations.  相似文献   

16.
Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad1 and Smad2 signals is sufficient to induce neural markers. Manipulations that inhibit both Smad1 and Smad2 pathways, including a truncated type IIB activin receptor, Smad7 and Ski, induce early neural markers and inhibit epidermal genes in ventral ectoderm; and co-expression of BMP inhibitors with a truncated activin/nodal-specific type IB activin receptor leads to efficient neural induction. Conversely, stimulation of Smad2 signaling in the neural plate at gastrula stages results in inhibition of neural markers, disruption of the neural tube and reduction of head structures, with conversion of neural to neural crest and mesodermal fates. The ability of activated Smad2 to block neural induction declines by the end of gastrulation. Our results indicate that prospective neural cells are poised to respond to Smad2 and Smad1 signals to adopt mesodermal and non-neural ectodermal fates even at gastrula stages, after the conventionally assigned end of mesodermal competence, so that continued suppression of both mesoderm- and epidermis-inducing Smad signals leads to efficient neural induction.  相似文献   

17.
18.
19.
We show that Rap2, a member of the Ras GTPase family, positively regulates Activin/Nodal signaling activity by controlling the trafficking of its receptors. In the absence of ligand activation, Rap2 directs internalized Activin/Nodal receptors into a recycling pathway, thereby preventing their degradation and maintaining their levels on the cell surface. Upon ligand activation, Rap2 no longer promotes receptor recycling but delays its turnover. In both cases, Rap2 contributes to upregulation of signaling activity by antagonizing Smad7. In addition, we found that the efficiency of Activin/Nodal receptor recycling is different between dorsal and ventral halves of Xenopus early embryo, which results from the asymmetric expression of Rap2 and Smad7. Consequently, they regulate cell responsiveness to ligands and the spatiotemporally dynamic activation of Smad2 along the dorsoventral axis of the embryo. Therefore, these findings suggest a molecular basis for the regulation of signaling activity and embryonic patterning by Activin/Nodal receptor trafficking.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号