首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The epidermis is maintained throughout adult life by pluripotential stem cells that give rise, via daughter cells of restricted self-renewal capacity and high differentiation probability (transit-amplifying cells), to interfollicular epidermis, hair follicles, and sebaceous glands. In vivo, transit-amplifying cells are actively cycling, whereas stem cells divide infrequently. Experiments with cultured human keratinocytes suggest that c-Myc promotes epidermal-stem cell differentiation. However, Myc is a potent oncogene that suppresses differentiation and causes reversible neoplasia when expressed in the differentiating epidermal layers of transgenic mice. To investigate the effects of c-Myc on the stem cell compartment in vivo, we targetted c-MycER to the basal layer of transgenic mouse epidermis. RESULTS: The activation of c-Myc by the application of 4-hydroxy-tamoxifen caused progressive and irreversible changes in adult epidermis. Proliferation was stimulated, but interfollicular keratinocytes still underwent normal terminal differentiation. Hair follicles were abnormal, and sebaceous differentiation was stimulated at the expense of hair differentiation. The activation of c-Myc by a single application of 4-hydroxy-tamoxifen was as effective as continuous treatment in stimulating proliferation and sebocyte differentiation, and the c-Myc-induced phenotype continued to develop even after the grafting of treated skin to an untreated recipient. CONCLUSIONS: We propose that transient activation of c-Myc drives keratinocytes from the stem to the transit-amplifying compartment and thereby stimulates proliferation and differentiation along the epidermal and sebaceous lineages. The ability, demonstrated here for the first time, to manipulate exit from the stem cell compartment in vivo will facilitate further investigations of the relationship between stem cells and cancer.  相似文献   

2.
Nuclear factor kappaB (NF-kappaB) plays a key role in suppression of tumor necrosis factor (TNF)-mediated apoptosis by inducing a variety of anti-apoptotic genes. Expression of c-Myc has been shown to sensitize cells to TNF-mediated apoptosis by inhibiting NF-kappaB activation. However, the precise step in the NF-kappaB signaling pathway and apoptosis modified by c-Myc has not been identified. Using the inducible c-MycER system and c-Myc null fibroblasts, we found that expression of c-Myc inhibited NF-kappaB activation by interfering with RelA/p65 transactivation but not nuclear translocation of NF-kappaB. Activation of c-Myc promoted TNF-induced release of cytochrome c from mitochondria to the cytosol because of the inhibition of NF-kappaB. Furthermore, we found that NF-kappaB-inducible gene A1 was attenuated by expression of c-Myc and that the restoration of A1 expression suppressed c-Myc-induced TNF sensitization. Our results elucidate the molecular mechanisms by which c-Myc increases cell susceptibility to TNF-mediated apoptosis, indicating that c-Myc may exhibit its pro-apoptotic activities by repression of cell survival genes.  相似文献   

3.
Aberrant activation of the Wnt/beta-catenin signaling pathway is associated with numerous human cancers and often correlates with the overexpression or amplification of the c-myc oncogene. Paradoxical to the cellular transformation potential of c-Myc is its ability to also induce apoptosis. Using an inducible c-MycER expression system, we found that Wnt/beta-catenin signaling suppressed apoptosis by inhibiting c-Myc-induced release of cytochrome c and caspase activation. Both cyclooxygenase 2 and WISP-1 were identified as effectors of the Wnt-mediated antiapoptotic signal. Soft agar assays showed that neither c-Myc nor Wnt-1 alone was sufficient to induce cellular transformation, but that Wnt and c-Myc coordinated in inducing transformation. Furthermore, coexpression of Wnt-1 and c-Myc induced high-frequency and rapid tumor growth in nude mice. Extensive apoptotic bodies were characteristic of c-Myc-induced tumors, but not tumors induced by coactivation of c-Myc and Wnt-1, indicating that the antiapoptotic function of Wnt-1 plays a critical role in the synergetic action between c-Myc and Wnt-1. These results elucidate the molecular mechanisms by which Wnt/beta-catenin inhibits apoptosis and provide new insight into Wnt signaling-mediated oncogenesis.  相似文献   

4.
As a novel approach to studying the modulation of the polarized epithelial phenotype, we have expressed c-Fos and c-Myc estrogen receptor fusion proteins (c-FosER and c-MycER) in mammary epithelial cells. The hybrid proteins could be activated by estrogen for defined time periods and after the cells had achieved their fully polarized organization. Activation of c-MycER deregulated proliferation but did not affect epithelial polarity. Short-term activation of c-FosER induced the reversible loss of morphological and functional cell polarity. In contrast, long-term stimulation of c-FosER caused the cells to depolarize irreversibly, to invade collagen gels, and to undergo epithelial-fibroblastoid cell conversion. Our data suggest that Fos proteins are important in modulating the epithelial phenotype both in normal tissue development and in invasive processes.  相似文献   

5.
Deregulated c-Myc expression leads to a cellular state where proliferation and apoptosis are equally favored depending on the cellular microenvironment. Since the apoptotic sensitivity of many cells is influenced by the status of the p53 tumor suppressor gene, we investigated whether the induction of apoptosis by DNA damage or non-genotoxic stress are also influenced by the p53 status of cells with altered c-Myc activity. Rat-1 fibroblasts expressing a conditional c-Myc allele (c-MycER), were transfected to express an antisense RNA complimentary to p53 mRNA. Expression of antisense p53 RNA decreased p53 protein levels and delayed p53 accumulation following c-Myc activation. Under hypoxic or low serum conditions, cells expressing antisense p53 were substantially more resistant to c-Myc-induced apoptosis than were control cells. c-Myc activation also sensitized Rat-1 cells to radiation-induced apoptosis. Rat-1 cells expressing antisense p53 RNA were more resistant to apoptosis induced by the combined effects of c-Myc activation and gamma irradiation. In a similar manner, apoptosis induced by c-Myc in serum starved, hypoxic or gamma irradiated fibroblasts was also inhibited by Bcl-2. These data indicate that p53 is involved in c-Myc-mediated apoptosis under a variety of stresses which may influence tumor growth, evolution and response to therapy.  相似文献   

6.
7.
8.
9.
10.
11.
Function of the c-Myc oncogenic transcription factor   总被引:29,自引:0,他引:29  
  相似文献   

12.
Fang CM  Shi C  Xu YH 《Cell research》1999,9(4):305-314
Human c-myc cDNA was fused with the hormonebinding domain (HBD) cDNA of murine estrogen receptor gene and the chimeric gene was introduced into the CHO cells.The fusion protein,c-MycER,becomes activated when the synthetic steroid,4-hydroxy-tamoxifen (OHT),binds HBD.Activated c-MycER,likely c-Myc,can induce quiescent CHO cells reentry into S phase and subsequent cell death under serum-free condition.In addition,the expression of some proposed c-myc target genes such as ODC,MrDb,cad,rccl and rcl were found to increase upon OHT induction before S phase entry and apoptosis,indicating that these target genes are involved in cell cycle regulation and/or apoptosis control.However,the mutant D106-143c-MycER protein does not have above activities.  相似文献   

13.
14.
The adult bone marrow contains a subset of non-haematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). Mesenchymal stem cells (MSCs) have attracted immense research interest in the field of regenerative medicine due to their ability to be cultured for successive passages and multi-lineage differentiation. The molecular mechanisms governing the self-renewal and differentiation of MSCs remain largely unknown. In a previous paper we demonstrated the ability to induce human clonal MSCs to differentiate into cells with a neuronal phenotype (DMSCs). In the present study we evaluated gene expression profiles by Sequential Analysis of Gene Expression (SAGE) and microRNA expression profiles before and after the neuronal differentiation process. Various tissue-specific genes were weakly expressed in MSCs, including those of non-mesodermal origin, suggesting multiple potential tissue-specific differentiation, as well as stemness markers. Expression of OCT4, KLF4 and c-Myc cell reprogramming factors, which are modulated during the differentiation process, was also observed. Many peculiar nervous tissue genes were expressed at a high level in DMSCs, along with genes related to apoptosis. MicroRNA profiling and correlation with mRNA expression profiles allowed us to identify putative important genes and microRNAs involved in the differentiation of MSCs into neuronal-like cells. The profound difference in gene and microRNA expression patterns between MSCs and DMSCs indicates a real functional change during differentiation from MSCs to DMSCs.  相似文献   

15.
16.
17.
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression.  相似文献   

18.
Ras-activated signal transduction pathways are implicated in the control of cell proliferation, differentiation, apoptosis, and tumorigenesis, but the molecular mechanisms mediating these diverse functions have yet to be fully elucidated. Conditionally active forms of Raf, v-Src, and MEK1 were used to identify changes in gene expression that participate in oncogenic transformation, as well as in normal growth control. Activation of Raf, v-Src, and MEK1 led to induced expression of c-Myc and cyclin D1. Induction of c-Myc mRNA by Raf was an immediate-early response, whereas the induction of cyclin D1 mRNA was delayed and inhibited by cycloheximide. Raf activation also resulted in the induction of an established c-Myc target gene, ornithine decarboxylase (ODC). ODC induction by Raf was mediated, in part, by tandem E-boxes contained in the first intron of the gene. Activation of the human colony-stimulating factor 1 (CSF-1) receptor in NIH 3T3 cells leads to activation of the mitogen-activated protein (MAP) kinase pathway and induced expression of c-Fos, c-Myc, and cyclin D1, leading to a potent mitogenic response. By contrast, a mutated form of this receptor fails to activate the MAP kinases or induce c-Myc and cyclin D1 expression and fails to elicit a mitogenic response. The biological significance of c-Myc and cyclin D1 induction by Raf and v-Src was confirmed by the demonstration that both of these protein kinases complemented the signaling and mitogenic defects of cells expressing this mutated form of the human CSF-1 receptor. Furthermore, the induction of c-Myc and cyclin D1 by oncogenes and growth factors was inhibited by PD098059, a specific MAP kinase kinase (MEK) inhibitor. These data suggest that the Raf/MEK/MAP kinase pathway plays an important role in the regulation of c-Myc and cyclin D1 expression in NIH 3T3 cells. The ability of oncogenes such as Raf and v-Src to regulate the expression of these proteins reveals new lines of communication between cytosolic signal transducers and the cell cycle machinery.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号