首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although protein-tyrosine phosphatase 1B (PTP-1B) is a negative regulator of insulin action, adipose tissue from PTP-1B-/- mice does not show enhanced insulin-stimulated insulin receptor phosphorylation. Investigation of glucose uptake in isolated adipocytes revealed that the adipocytes from PTP-1B-/- mice have a significantly attenuated insulin response as compared with PTP-1B+/+ adipocytes. This insulin resistance manifests in PTP-1B-/- animals older than 16 weeks of age and could be partially rescued by adenoviral expression of PTP-1B in null adipocytes. Examination of adipose signaling pathways found that the basal p70S6K activity was at least 50% higher in adipose from PTP-1B-/- mice compared with wild type animals. The increased basal activity of p70S6K in PTP-1B-/- adipose correlated with decreases in IR substrate-1 protein levels and insulin-stimulated Akt/protein kinase B activity, explaining the decrease in insulin sensitivity even as insulin receptor phosphorylation was unaffected. The insulin resistance of the of the PTP-1B-/- adipocytes could also be rescued by treatment with rapamycin, suggesting that in adipose the loss of PTP-1B results in basal activation of mTOR (mammalian target of rapamycin) complex 1 leading to a tissue-specific insulin resistance.  相似文献   

2.
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.  相似文献   

3.
Protein-tyrosine phosphatases (PTPases) play a key role in maintaining the steady-state tyrosine phosphorylation of the insulin receptor (IR) and its substrate proteins such as insulin receptor substrate 1 (IRS-1). However, the PTPase(s) that inactivate IR and IRS-1 under physiological conditions remain unidentified. Here, we analyze the subcellular distribution in rat adipocytes of several PTPases thought to be involved in the counterregulation of insulin signaling. We found that the transmembrane enzymes, protein-tyrosine phosphatase (PTP)-alpha and leukocyte common antigen-related (LAR), were detected predominantly in the plasma membrane and to a lesser extent in the heavy microsomes, a distribution similar to that of insulin receptor. PTP-1B and IRS-1 were present in light microsomes and cytosol, whereas SHPTP2/Syp was exclusively cytosolic. Insulin induced a redistribution of PTP-alpha from the plasma membrane to the heavy microsomes in a parallel fashion with the receptor. The distribution of PTP-1B in the light microsomes from resting adipocytes was similar to that of IRS-1 as determined by sucrose velocity gradient fractionation. Analysis of the catalytic activity of partially purified rat adipocyte PTP-alpha and LAR and recombinant PTP-1B showed that all three PTPases dephosphorylate IR. When a mix of IR/IRS-1 was used as a substrate, PTP-1B was particularly effective in dephosphorylating IRS-1. Considering that IR and IRS-1 can be dephosphorylated in internal membrane compartments from rat adipocytes (Kublaoui, B., Lee, J., and Pilch, P.F. (1995) J. Biol. Chem. 270, 59-65) and that PTP-alpha and PTP-1B are the respective PTPases in these fractions, we conclude that these PTPases are responsible for the counterregulation of insulin signaling there, whereas both LAR and PTP-alpha may act upon cell surface insulin receptors.  相似文献   

4.
Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires 相似文献   

5.
Stearoyl-CoA desaturase (SCD) is a microsomal enzyme involved in the biosynthesis of oleate and palmitoleate. Mice with a targeted disruption of the SCD1 isoform (SCD1-/-) exhibit reduced adiposity and increased energy expenditure. To address whether the energy expenditure is attributable to increased thermogenesis, we investigated the effect of SCD1 deficiency on basal and cold-induced thermogenesis. SCD1-/- mice have increased expression of uncoupling proteins in brown adipose tissue (BAT) relative to controls. The beta3-adrenergic receptor (beta3-AR) expression was increased and the phosphorylation of cAMP response element binding protein and the protein level of peroxisome proliferator-activated receptor-gamma coactivator-1alpha were increased in the SCD1-/- mice. Both lipolysis and fatty acid oxidation were increased in the SCD1-/- mice. When exposed to 4 degrees C, SCD1-/- mice showed hypothermia, hypoglycemia, and depleted liver glycogen. High levels of dietary oleate partially compensated for the hypothermia and rescued plasma glucose and liver glycogen. These results suggest that SCD1 deficiency stimulates basal thermogenesis through the upregulation of the beta3-AR-mediated pathway and a subsequent increase in lipolysis and fatty acid oxidation in BAT. The hypothermia and hypoglycemia in cold-exposed SCD1-/- mice and the compensatory recovery by oleate indicate an important role of SCD1 gene expression in thermoregulation.  相似文献   

6.
Insulin resistance is a risk factor for non-response to interferon/ribavirin therapy in patients with chronic hepatitis C. The aim of this study was to determine the role played by protein-tyrosine phosphatases (PTPs) in the absence of interferon-α (IFNα) response associated with insulin resistance. We induced insulin resistance by silencing IRS-2 or by treating HepG2 cells with tumor necrosis factor-α (TNFα) and analyzed insulin response by evaluating Akt phosphorylation and IFNα response by measuring Stat-1 tyrosine phosphorylation and 2',5'-oligoadenylate synthase and myxovirus resistance gene expression. The response to IFNα was also measured in insulin-resistant obese mice (high fat diet and ob/ob mice) untreated and treated with metformin. Silencing IRS-2 mRNA induces insulin resistance and inhibits IFNα response. Likewise, TNFα suppresses insulin and IFNα response. Treatment of cells with pervanadate and knocking down PTP-1B restores insulin and IFNα response. Both silencing IRS-2 and TNFα treatment increase PTP and PTP-1B activity. Metformin inhibits PTP and improves IFNα response in insulin-resistant cells. Insulin-resistant ob/ob mice have increased PTP-1B gene expression and activity in the liver and do not respond to IFNα administration. Treatment with metformin improves this response. In HepG2 cells, insulin resistance provokes IFNα resistance, which is associated with an increased PTP-1B activity in the liver. Inhibition of PTP-1B activity with pervanadate and metformin or knocking down PTP-1B reestablishes IFNα response. Likewise, metformin decreases PTP-1B activity and improves response to IFNα in insulin-resistant obese mice. The use of PTP-1B inhibitors may improve the response to IFNα/ribavirin therapy.  相似文献   

7.
8.
To examine the impact of homozygous genetic disruption of insulin receptor substrate (IRS)-1 (IRS-1(-/-)) or IRS-2 (IRS-2(-/-)) on basal and insulin-stimulated carbohydrate and lipid metabolism in vivo, we infused 18-h fasted mice (wild-type (WT), IRS-1(-/-), and IRS-2(-/-)) with [3-(3)H]glucose and [(2)H(5)]glycerol and assessed rates of glucose and glycerol turnover under basal (0-90 min) and hyperinsulinemic-euglycemic clamp (90-210 min; 5 mm glucose, and 5 milliunits of insulin.kg(-)(1).min(-)(1)) conditions. Both IRS-1(-)(/-) and IRS-2(-)(/-) mice were insulin-resistant as reflected by markedly impaired insulin-stimulated whole-body glucose utilization compared with WT mice. Insulin resistance in the IRS-1(-)(/-) mice could be ascribed mainly to decreased insulin-stimulated peripheral glucose metabolism. In contrast, IRS-2(-)(/-) mice displayed multiple defects in insulin-mediated carbohydrate metabolism as reflected by (i) decreased peripheral glucose utilization, (ii) decreased suppression of endogenous glucose production, and (iii) decreased hepatic glycogen synthesis. Additionally, IRS-2(-)(/-) mice also showed marked insulin resistance in adipose tissue as reflected by reduced suppression of plasma free fatty acid concentrations and glycerol turnover during the hyperinsulinemic-euglycemic clamp. These data suggest important tissue-specific roles for IRS-1 and IRS-2 in mediating the effect of insulin on carbohydrate and lipid metabolism in vivo in mice. IRS-1 appears to have its major role in muscle, whereas IRS-2 appears to impact on liver, muscle, and adipose tissue.  相似文献   

9.
Protein-tyrosine phosphatase 1B (PTP-1B) is a major protein-tyrosine phosphatase that has been implicated in the regulation of insulin action, as well as in other signal transduction pathways. To investigate the role of PTP-1B in vivo, we generated homozygotic PTP-1B-null mice by targeted gene disruption. PTP-1B-deficient mice have remarkably low adiposity and are protected from diet-induced obesity. Decreased adiposity is due to a marked reduction in fat cell mass without a decrease in adipocyte number. Leanness in PTP-1B-deficient mice is accompanied by increased basal metabolic rate and total energy expenditure, without marked alteration of uncoupling protein mRNA expression. In addition, insulin-stimulated whole-body glucose disposal is enhanced significantly in PTP-1B-deficient animals, as shown by hyperinsulinemic-euglycemic clamp studies. Remarkably, increased insulin sensitivity in PTP-1B-deficient mice is tissue specific, as insulin-stimulated glucose uptake is elevated in skeletal muscle, whereas adipose tissue is unaffected. Our results identify PTP-1B as a major regulator of energy balance, insulin sensitivity, and body fat stores in vivo.  相似文献   

10.
Mice heterozygous for insulin receptor (IR) and IR substrate (IRS)-1 deficiency provide a model of polygenic type 2 diabetes in which early-onset, genetically programmed insulin resistance leads to diabetes. Protein-tyrosine phosphatase 1B (PTP1B) dephosphorylates tyrosine residues in IR and possibly IRS proteins, thereby inhibiting insulin signaling. Mice lacking PTP1B are lean and have increased insulin sensitivity. To determine whether PTP1B can modify polygenic insulin resistance, we crossed PTP1B-/- mice with mice with a double heterozygous deficiency of IR and IRS-1 alleles (DHet). DHet mice weighed slightly less than wild-type mice and exhibited severe insulin resistance and hyperglycemia, with approximately 35% of DHet males developing diabetes by 9-10 weeks of age. Body weight in DHet mice with PTP1B deficiency was similar to that in DHet mice. However, absence of PTP1B in DHet mice markedly improved glucose tolerance and insulin sensitivity at 10-11 weeks of age and reduced the incidence of diabetes and hyperplastic pancreatic islets at 6 months of age. Insulin-stimulated phosphorylation of IR, IRS proteins, Akt/protein kinase B, glycogen synthase kinase 3beta, and p70(S6K) was impaired in DHet mouse muscle and liver and was differentially improved by PTP1B deficiency. In addition, increased phosphoenolpyruvate carboxykinase expression in DHet mouse liver was reversed by PTP1B deficiency. In summary, PTP1B deficiency reduces insulin resistance and hyperglycemia without altering body weight in a model of polygenic type 2 diabetes. Thus, even in the setting of high genetic risk for diabetes, reducing PTP1B is partially protective, further demonstrating its attractiveness as a target for prevention and treatment of type 2 diabetes.  相似文献   

11.
CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.  相似文献   

12.
The purpose of this study was to determine the influence of insulin receptor substrate-1 (IRS-1) expression on GLUT1 and GLUT4 glucose transporter protein abundance, contraction-stimulated glucose uptake, and contraction-induced glycogen depletion by skeletal muscle. Mice (6 months old) from three genotypes were studied: wild-type (IRS-1(+/+)), heterozygous (IRS-1(+/-)) for the null allele, and IRS-1 knockouts (IRS-1(-/-)) lacking a functional IRS-1 gene. In situ muscle contraction was induced (electrical stimulation of sciatic nerve) in one hindlimb using contralateral muscles as controls. Soleus and extensor digitorum longus were dissected and 2-deoxyglucose uptake was measured in vitro. 2-Deoxyglucose uptake was higher in basal muscles (no contractions) from IRS-1(-/-) vs. both other genotypes. Contraction-stimulated 2-deoxyglucose uptake and glycogen depletion did not differ among genotypes. Muscle IRS-1 protein was undetectable for IRS-1(-/-) mice, and values were approximately 40 % lower in IRS-1(+/-) than in IRS-1(+/+) mice. No difference was found in IRS-1(+/+) compared to IRS-1(-/-) groups regarding muscle abundance of GLUT1 and GLUT4. Substantial reduction or elimination of IRS-1 did not alter the hallmark effects of contractions on muscle carbohydrate metabolism--activation of glucose uptake and glycogen depletion.  相似文献   

13.
We have derived skeletal muscle cell lines from wild-type (wt) and insulin receptor (IR) knockout mice to unravel the metabolic potential of IGF-1 receptor (IGF-1R). Both wt and IR(-/-) myoblasts differentiated into myotubes with similar patterns of expression of muscle-specific genes such as MyoD, myogenin and MLC1A indicating that IR is not required for this process. Binding of 125I-IGF-1 on wt and IR(-/-) myotubes was similar showing that IGF-1R was not upregulated in the absence of IR. Stimulation of IR(-/-) myotubes with IGF-1 (10(-10) to 10(-7) M) increased glucose uptake and incorporation into glycogen, induced IRS-1 phosphorylation and activated PI 3-kinase and MAP kinase, two enzymes of major signaling pathways. These effects were comparable to those obtained with wt myotubes using insulin or IGF-1 or with IR(-/-) myotubes using insulin at higher concentrations. This study provides a direct evidence that IGF-1R can represent an alternative receptor for metabolic signaling in muscle cells.  相似文献   

14.
Uncoupling protein-3 (UCP3) is a poorly understood mitochondrial inner membrane protein expressed predominantly in skeletal muscle. The aim of this study was to examine the effects of the absence or constitutive physiological overexpression of UCP3 on whole body energy metabolism, glucose tolerance, and muscle triglyceride content. Congenic male UCP3 knockout mice (Ucp3-/-), wild-type, and transgenic UCP3 overexpressing (UCP3Tg) mice were fed a 10% fat diet for 4 or 8 mo after they were weaned. UCP3Tg mice had lower body weights and were less metabolically efficient than wild-type or Ucp3-/- mice, but they were not hyperphagic. UCP3Tg mice had smaller epididymal white adipose tissue and brown adipose tissue (BAT) depots; however, there were no differences in muscle weights. Glucose and insulin tolerance tests revealed that both UCP3Tg and Ucp3-/- mice were protected from development of impaired glucose tolerance and were more sensitive to insulin. 2-Deoxy-D-[1-3H]glucose tracer studies showed increased uptake of glucose into BAT and increased storage of liver glycogen in Ucp3-/- mice. Assessments of intramuscular triglyceride (IMTG) revealed decreases in quadriceps of UCP3Tg mice compared with wild-type and Ucp3-/- mice. When challenged with a 45% fat diet, Ucp3-/- mice showed increased accumulation of IMTG compared with wild-type mice, which in turn had greater IMTG than UCP3Tg mice. Results are consistent with a role for UCP3 in preventing accumulation of triglyceride in both adipose tissue and muscle.  相似文献   

15.
To explore the effect of LYRM1 over-expression on basal and insulin-stimulated glucose uptake in rat skeletal muscle cells, and to understand the underlying mechanisms, Rat myoblasts (L6) transfected with either an empty expression vector (pcDNA3.1Myc/His B) or a LYRM1 expression vector were differentiated into myotubes. Glucose uptake was determined by measuring 2-deoxy-D-[(3)H] glucose uptake into L6 myotubes. Western blotting was performed to assess the translocation of insulin-sensitive glucose transporter 4 (GLUT4). It was also used to measure the phosphorylation and total protein contents of insulin-signaling proteins, such as the insulin receptor (IR), insulin receptor substrate (IRS)-1, phosphatidylinositol-3-kinase (PI3K) p85, Akt, ERK1/2, P38, and JNK. LYRM1 over-expression in L6 myotubes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1, PI3K (p85), and serine phosphorylation of Akt without affecting the phosphorylation of IR, ERK1/2, P38, and JNK. LYRM1 regulates the function of IRS-1, PI3K, and Akt, and decreases GLUT4 translocation and glucose uptake in response to insulin. These observations highlight the potential role of LYRM1 in glucose homeostasis and possibly in the pathophysiology of type 2 diabetes related to obesity.  相似文献   

16.
Peroxisome proliferator-activated receptor gamma (PPAR gamma) co-activator 1 (PGC-1) regulates glucose metabolism and energy expenditure and, thus, potentially insulin sensitivity. We examined the expression of PGC-1, PPAR gamma, insulin receptor substrate-1 (IRS-1), glucose transporter isoform-4 (GLUT-4), and mitochondrial uncoupling protein-1 (UCP-1) in adipose tissue and skeletal muscle from non-obese, non-diabetic insulin-resistant, and insulin-sensitive individuals. PGC-1, both mRNA and protein, was expressed in human adipose tissue and the expression was significantly reduced in insulin-resistant subjects. The expression of PGC-1 correlated with the mRNA levels of IRS-1, GLUT-4, and UCP-1 in adipose tissue. Furthermore, the adipose tissue expression of PGC-1 and IRS-1 correlated with insulin action in vivo. In contrast, no differential expression of PGC-1, GLUT-4, or IRS-1 was found in the skeletal muscle of insulin-resistant vs insulin-sensitive subjects. The findings suggest that PGC-1 may be involved in the differential gene expression and regulation between adipose tissue and skeletal muscle. The combined reduction of PGC-1 and insulin signaling molecules in adipose tissue implicates adipose tissue dysfunction which, in turn, can impair the systemic insulin response in the insulin-resistant subjects.  相似文献   

17.
Decreased GLUT4 expression, impaired insulin receptor (IR), IRS-1, and pp60/IRS-3 tyrosine phosphorylation are characteristics of adipocytes from insulin-resistant animal models and obese NIDDM humans. However, the sequence of events leading to the development of insulin signaling defects and the significance of decreased GLUT4 expression in causing adipocyte insulin resistance are unknown. The present study used male heterozygous GLUT4 knockout mice (GLUT4(+/-)) as a novel model of diabetes to study the development of insulin signaling defects in adipocytes with the progression of whole body insulin resistance and diabetes. Male GLUT4(+/-) mice with normal fed glycemia and insulinemia (N/N), normal fed glycemia and hyperinsulinemia (N/H), and fed hyperglycemia with hyperinsulinemia (H/H) exist at all ages. The expression of GLUT4 protein and the maximal insulin-stimulated glucose transport was 50% decreased in adipocytes from all three groups. Insulin signaling was normal in N/N adipose cells. From 35 to 70% reductions in insulin-stimulated tyrosine phosphorylation of IR, IRS-1, and pp60/IRS-3 were noted with no changes in the cellular content of IR, IRS-1, and p85 in N/H adipocytes. Insulin-stimulated protein tyrosine phosphorylation was further decreased to 12-23% in H/H adipose cells accompanied by 42% decreased IR and 80% increased p85 expression. Insulin-stimulated, IRS-1-associated PI3 kinase activity was decreased by 20% in N/H and 68% reduced in H/H GLUT4(+/-) adipocytes. However, total insulin-stimulated PI3 kinase activity was normal in H/H GLUT4(+/-) adipocytes. Taken together, these results strongly suggest that hyperinsulinemia triggers a reduction of IR tyrosine kinase activity that is further exacerbated by the appearance of hyperglycemia. However, the insulin signaling cascade has sufficient plasticity to accommodate significant changes in specific components without further reducing glucose uptake. Furthermore, the data indicate that the cellular content of GLUT4 is the rate-limiting factor in mediating maximal insulin-stimulated glucose uptake in GLUT4(+/-) adipocytes.  相似文献   

18.
19.
Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, plays an important role in obesity-induced insulin resistance. Inhibition of iNOS by gene disruption or pharmacological inhibitors reverses or ameliorates obesity-induced insulin resistance in skeletal muscle and liver in mice. It is unknown, however, whether increased expression of iNOS is sufficient to cause insulin resistance in vivo. To address this issue, we generated liver-specific iNOS transgenic (L-iNOS-Tg) mice, where expression of the transgene, iNOS, is regulated under mouse albumin promoter. L-iNOS-Tg mice exhibited mild hyperglycemia, hyperinsulinemia, insulin resistance, and impaired insulin-induced suppression of hepatic glucose output, as compared with wild type (WT) littermates. Insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) and -2, and Akt was significantly attenuated in liver, but not in skeletal muscle, of L-iNOS-Tg mice relative to WT mice without changes in insulin receptor phosphorylation. Moreover, liver-specific iNOS expression abrogated insulin-stimulated phosphorylation of glycogen synthase kinase-3β, forkhead box O1, and mTOR (mammalian target of rapamycin), endogenous substrates of Akt, along with increased S-nitrosylation of Akt relative to WT mice. However, the expression of insulin receptor, IRS-1, IRS-2, Akt, glycogen synthase kinase-3β, forkhead box O1, protein-tyrosine phosphatase-1B, PTEN (phosphatase and tensin homolog), and p85 phosphatidylinositol 3-kinase was not altered by iNOS transgene. Hyperglycemia was associated with elevated glycogen phosphorylase activity and decreased glycogen synthase activity in the liver of L-iNOS-Tg mice, whereas phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and proliferator-activated receptor γ coactivator-1α expression were not altered. These results clearly indicate that selective expression of iNOS in liver causes hepatic insulin resistance along with deranged insulin signaling, leading to hyperglycemia and hyperinsulinemia. Our data highlight a critical role for iNOS in the development of hepatic insulin resistance and hyperglycemia.  相似文献   

20.
Protein tyrosine phosphatase 1B (PTP-1B) has been implicated in the regulation of the insulin receptor. Dephosphorylation of the insulin receptor results in decreased insulin signaling and thus decreased glucose uptake. PTP-1B-/- mice have increased insulin sensitivity and are resistant to weight gain when fed a high fat diet, validating PTP-1B as a potential target for the treatment of type 2 diabetes. Many groups throughout the world have been searching for selective inhibitors for PTP-1B, and most of them target inhibitors to PTP-1B-(1-298), the N-terminal catalytic domain of the enzyme. However, the C-terminal domain is quite large and could influence the activity of the enzyme. Using two constructs of PTP-1B and a phosphopeptide as substrate, steady state assays showed that the presence of the C-terminal domain decreased both the Km and the k(cat) 2-fold. Pre-steady state kinetic experiments showed that the presence of the C-terminal domain improved the affinity of the enzyme for a phosphopeptide 2-fold, primarily because the off-rate was slower. This suggests that the C-terminal domain of PTP-1B may contact the phosphopeptide in some manner, allowing it to remain at the active site longer. This could be useful when screening libraries of compounds for inhibitors of PTP-1B. A compound that is able to make contacts with the C-terminal domain of PTP-1B would not only have a modest improvement in affinity but may also provide for specificity over other phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号