首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

2.
We investigated the effects of chronic creatine loading and voluntary running (Run) on muscle fiber types, proteins that regulate intracellular Ca2+, and the metabolic profile in rat plantaris muscle to ascertain the bases for our previous observations that creatine loading results in a higher proportion of myosin heavy chain (MHC) IIb, without corresponding changes in contractile properties. Forty Sprague-Dawley rats were assigned to one of four groups: creatine-fed sedentary, creatine-fed run-trained, control-fed sedentary, and control-fed run-trained animals. Proportion and cross-sectional area increased 10% and 15% in type IIb fibers and the proportion of type IIa fibers decreased 11% in the creatine-fed run-trained compared with the control-fed run-trained group (P < 0.03). No differences were observed in fast Ca2+-ATPase isoform SERCA1 content (P > 0.49). Creatine feeding alone induced a 41% increase (P < 0.03) in slow Ca2+-ATPase (SERCA2) content, which was further elevated by 33% with running (P < 0.02). Run training alone reduced parvalbumin content by 50% (P < 0.05). By comparison, parvalbumin content was dramatically decreased by 75% (P < 0.01) by creatine feeding alone but was not further reduced by run training. These adaptive changes indicate that elevating the capacity for high-energy phosphate shuttling, through creatine loading, alleviates the need for intracellular Ca2+ buffering by parvalbumin and increases the efficiency of Ca2+ uptake by SERCAs. Citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities were elevated by run training (P < 0.003) but not by run training + creatine feeding. This indicates that creatine loading during run training supports a faster muscle phenotype that is adequately supported by the existing glycolytic potential, without changes in the capacity for terminal substrate oxidation.  相似文献   

3.
4.
This study was conducted to explore the mechanism by which caffeine increases GLUT4 expression in C(2)C(12) myotubes. Myoblasts were differentiated in DMEM containing 2% horse serum for 13 days and the resultant myotubes exposed to 10 mM caffeine in the presence or absence of 25 microM KN93 or 10 mM dantrolene for 2 h. After the treatment, cells were kept in serum-free medium and harvested between 0 and 6 h later, depending on the assay. Chromatin immunoprecipitation (ChIP) assays revealed that caffeine treatment caused hyperacetylation of histone H3 at the myocyte enhancer factor 2 (MEF2) site on the Glut4 promoter (P < 0.05) and increased the amount of MEF2A that was bound to this site approximately 2.2-fold (P < 0.05) 4 h posttreatment compared with controls. These increases were accompanied by an approximately 1.8-fold rise (P < 0.05 vs. control) in GLUT4 mRNA content at 6 h post-caffeine treatment. Both immunoblot and immunocytochemical analyses showed reduced nuclear content of histone deacetylase-5 in caffeine-treated myotubes compared with controls at 0-2 h posttreatment. Inclusion of 10 mM dantrolene in the medium to prevent the increase in cytosolic Ca(2+), or 25 microM KN93 to inhibit Ca(2+)/calmodulin-dependent protein kinase (CaMK II), attenuated all the above caffeine-induced changes. These data indicate that caffeine increases GLUT4 expression by acetylating the MEF2 site to increase MEF2A binding via a mechanism that involves CaMK II.  相似文献   

5.
Decreasing muscle phosphagen content through dietary administration of the creatine analog beta-guanidinopropionic acid (beta-GPA) improves skeletal muscle oxidative capacity and resistance to fatigue during aerobic exercise in rodents, similar to that observed with endurance training. Surprisingly, the effect of beta-GPA on muscle substrate metabolism has been relatively unexamined, with only a few reports of increased muscle GLUT4 content and insulin-stimulated glucose uptake/clearance in rodent muscle. The effect of chronically decreasing muscle phophagen content on muscle fatty acid (FA) metabolism (transport, oxidation, esterification) is virtually unknown. The purpose of the present study was to examine changes in muscle substrate metabolism in response to 8 wk feeding of beta-GPA. Consistent with other reports, beta-GPA feeding decreased muscle ATP and total creatine content by approximately 50 and 90%, respectively. This decline in energy charge was associated with simultaneous increases in both glucose (GLUT4; +33 to 45%, P < 0.01) and FA (FAT/CD36; +28 to 33%, P < 0.05) transporters in the sarcolemma of red and white muscle. Accordingly, we also observed significant increases in insulin-stimulated glucose transport (+47%, P < 0.05) and AICAR-stimulated palmitate oxidation (+77%, P < 0.01) in the soleus muscle of beta-GPA-fed animals. Phosphorylation of AMPK (+20%, P < 0.05), but not total protein, was significantly increased in both fiber types in response to muscle phosphagen reduction. Thus the content of sarcolemmal transporters for both of the major energy substrates for muscle increased in response to a reduced energy charge. Increased phosphorylation of AMPK may be one of the triggers for this response.  相似文献   

6.
The effect of selective vs. nonselective beta-blockade on fast-twitch [extensor digitorum longus (EDL)] and slow-twitch [soleus (SOL)] muscle enzyme activities following endurance training were characterized. Citrate synthase (CS), lactate dehydrogenase (LDH), and beta-hydroxyacyl-CoA dehydrogenase (HAD) activities were compared in SOL and EDL muscles of trained (T), metoprolol-trained (MT), propranolol-trained (PT), and sedentary (C) rats. Following 8 wk of treadmill running (1 h/day, 5 days/wk at approximately 30 m/min), LDH activity was depressed approximately 20% (P less than 0.05) in both SOL and EDL in only the PT rats, indicating inhibition of beta 2-mediated anaerobic glycolysis. EDL CS activity was similarly elevated in all three trained groups compared with sedentary controls. In SOL muscle, however, a drug attenuation effect was observed so that CS activity was increased only in the T (P less than 0.01) and MT (P less than 0.05) groups. HAD enzyme activity was increased somewhat (P less than 0.10) in SOL muscle in only the T group, but more so (P less than 0.05) in EDL in all three trained groups. The above findings suggest a training-induced selectivity effect not only with respect to beta 1-vs. beta 1-beta 2-blockers, but also with respect to muscle fiber type.  相似文献   

7.
Fucoxanthin (Fx) isolated from Undaria pinnatifida suppresses the development of hyperglycemia and hyperinsulinemia of diabetic/obese KK-A(y) mice after 2 weeks of feeding 0.2% Fx-containing diet. In the soleus muscle of KK-A(y) mice that were fed Fx, glucose transporter 4 (GLUT4) translocation to plasma membranes from cytosol was promoted. On the other hand, Fx increased GLUT4 expression levels in the extensor digitorum longus (EDL) muscle, although GLUT4 translocation tended to increase. The expression levels of insulin receptor (IR) mRNA and phosphorylation of Akt, which are in upstream of the insulin signaling pathway regulating GLUT4 translocation, were also enhanced in the soleus and EDL muscles of the mice fed Fx. Furthermore, Fx induced peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α), which has been reported to increase GLUT4 expression, in both soleus and EDL muscles. These results suggest that in diabetic/obese KK-A(y) mice, Fx improves hyperglycemia by activating the insulin signaling pathway, including GLUT4 translocation, and inducing GLUT4 expression in the soleus and EDL muscles, respectively, of diabetic/obese KK-A(y) mice.  相似文献   

8.
Skeletal muscle is a heterogeneous tissue. To further elucidate this heterogeneity, we probed relationships between myosin heavy chain (MHC) isoform composition and abundance of GLUT4 and four other proteins that are established or putative GLUT4 regulators [Akt substrate of 160 kDa (AS160), Tre-2/Bub2/Cdc 16-domain member 1 (TBC1D1), Tethering protein containing an UBX-domain for GLUT4 (TUG), and RuvB-like protein two (RUVBL2)] in 12 skeletal muscles or muscle regions from Wistar rats [adductor longus, extensor digitorum longus, epitrochlearis, gastrocnemius (mixed, red, and white), plantaris, soleus, tibialis anterior (red and white), tensor fasciae latae, and white vastus lateralis]. Key results were 1) significant differences found among the muscles (range of muscle expression values) for GLUT4 (2.5-fold), TUG (1.7-fold), RUVBL2 (2.0-fold), and TBC1D1 (2.7-fold), but not AS160; 2) significant positive correlations for pairs of proteins: GLUT4 vs. TUG (R = 0.699), GLUT4 vs. RUVBL2 (R = 0.613), TUG vs. RUVBL2 (R = 0.564), AS160 vs. TBC1D1 (R = 0.293), and AS160 vs. TUG (R = 0.246); 3) significant positive correlations for %MHC-I: GLUT4 (R = 0.460), TUG (R = 0.538), and RUVBL2 (R = 0.511); 4) significant positive correlations for %MHC-IIa: GLUT4 (R = 0.293) and RUVBL2 (R = 0.204); 5) significant negative correlations for %MHC-IIb vs. GLUT4 (R = -0.642), TUG (R = -0.626), and RUVBL2 (R = -0.692); and 6) neither AS160 nor TBC1D1 significantly correlated with MHC isoforms. In 12 rat muscles, GLUT4 abundance tracked with TUG and RUVBL2 and correlated with MHC isoform expression, but was unrelated to AS160 or TBC1D1. Our working hypothesis is that some of the mechanisms that regulate GLUT4 abundance in rat skeletal muscle also influence TUG and RUVBL2 abundance.  相似文献   

9.
The purpose of the present investigation was to establish an in vitro mammalian skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated, whole muscles [soleus and extensor digitorum longus (EDL)] were dissected from Long-Evans rats and incubated for 60 min in Sigma medium 199 (1 g of resting tension, bubbled with 95% O(2)-5% O(2), 30 +/- 2 degrees C, and pH 7.4). Medium osmolality was altered to simulate hyposmotic (190 +/- 10 mmol/kg) or hyperosmotic conditions (400 +/- 10 mmol/kg), whereas an isosmotic condition (290 +/- 10 mmol/kg) served as a control. After incubation, relative water content of the muscle decreased with hyperosmotic and increased with hyposmotic condition in both muscle types (P < 0.05). The cross-sectional area of soleus type I and type II fibers increased (P < 0.05) in hyposmotic, whereas hyperosmotic exposure led to no detectable changes. The EDL type II fiber area decreased in the hyperosmotic condition and increased after hyposmotic exposure, whereas no change was observed in EDL type I fibers. Furthermore, exposure to the hyperosmotic condition in both muscle types resulted in decreased muscle ATP and phosphocreatine (P < 0.05) contents and increased creatine and lactate contents (P < 0.05) compared with control and hyposmotic conditions. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acute alterations in muscle water content and resting muscle metabolism.  相似文献   

10.
11.
Systemic infection with Escherichia coli significantly decreased feed intake, slowed growth of the whole body and skeletal muscles, and severely inhibited muscle protein accumulation in both chicks and rats. Treatment with naproxen (6-methoxy-alpha-methyl-2-naphthaleneacetic acid), an inhibitor of prostaglandin production, decreased weight losses of body and muscle, and significantly inhibited muscle protein wasting in infected chicks and rats. E. coli infection increased net protein degradation by 44.8% (P less than 0.05) and prostaglandin E2 production by 148% (P less than 0.05) in isolated extensor digitorum communis muscle from chicks on day 2 after infection. Naproxen treatment significantly decreased net protein degradation and prostaglandin E2 production in infected chicks to values seen in muscles of healthy controls. Quantitatively and qualitatively similar results were seen in isolated rat epitrochlearis muscle.  相似文献   

12.
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism.  相似文献   

13.
AMP deaminase catalyzes deamination of the AMP formed in contracting muscles to inosine 5'-monophosphate (IMP). Slow-twitch muscle has only approximately 30% as high a level of AMP deaminase activity as fast-twitch muscle in the rat, and rates of IMP formation during intense contractile activity are much lower in slow-twitch muscle. We found that feeding the creatine analogue beta-guanidinopropionic acid (beta-GPA) to rats, which results in creatine depletion, causes a large decrease in muscle AMP deaminase. This adaptation was used to evaluate the role of AMP deaminase activity level in accounting for differences in IMP production in slow-twitch and fast-twitch muscles. beta-GPA feeding for 3 wk lowered AMP deaminase activity in fast-twitch epitrochlearis muscle to a level similar to that found in the normal slow-twitch soleus muscle but had no effect on the magnitude of the increase in IMP in response to intense contractile activity. Despite a similar decrease in ATP in the normal soleus and the epitrochlearis from beta-GPA-fed rats, the increase in IMP was only approximately 30% as great in the soleus in response to intense contractile activity. These results demonstrate that the accumulation of less IMP in slow- compared with fast-twitch skeletal muscle during contractile activity is not due to the lower level of AMP deaminase in slow-twitch muscle.  相似文献   

14.
15.
In vitro binding assays have indicated that the exercise-induced increase in muscle GLUT4 is preceded by increased binding of myocyte enhancer factor 2A (MEF2A) to its cis-element on the Glut4 promoter. Because in vivo binding conditions are often not adequately recreated in vitro, we measured the amount of MEF2A that was bound to the Glut4 promoter in rat triceps after an acute swimming exercise in vivo, using chromatin immunoprecipitation (ChIP) assays. Bound MEF2A was undetectable in nonexercised controls or at 24 h postexercise but was significantly elevated approximately 6 h postexercise. Interestingly, the increase in bound MEF2A was preceded by an increase in autonomous activity of calcium/calmodulin-dependent protein kinase (CaMK) II in the same muscle. To determine if CaMK signaling mediates MEF2A/DNA associations in vivo, we performed ChIP assays on C(2)C(12) myotubes expressing constitutively active (CA) or dominant negative (DN) CaMK IV proteins. We found that approximately 75% more MEF2A was bound to the Glut4 promoter in CA compared with DN CaMK IV-expressing cells. GLUT4 protein increased approximately 70% 24 h after exercise but was unchanged by overexpression of CA CaMK IV in myotubes. These results confirm that exercise increases the binding of MEF2A to the Glut4 promoter in vivo and provides evidence that CaMK signaling is involved in this interaction.  相似文献   

16.
The goal of the present study was to test the hypothesis that epimuscular myofascial force transmission occurs between deep flexor muscles of the rat and their antagonists: previously unstudied mechanical effects of length changes of deep flexors on the anterior crural muscles (i.e., extensor digitorum longus (EDL), as well as tibialis anterior and extensor hallucis longus muscle complex (TA + EHL) and peroneal (PER) muscles were assessed experimentally. These muscles or muscle groups were kept at constant length, whereas, distal length changes were imposed on deep flexor (DF) muscles before performing isometric contractions. Distal forces of all muscle-tendon complexes were measured simultaneously, in addition to EDL proximal force. Distal lengthening of DF caused substantial significant effects on its antagonistic muscles: (1) increase in proximal EDL total force (maximally 19.2%), (2) decrease in distal EDL total (maximally 8.4%) and passive (maximally 49%) forces, (3) variable proximo-distal total force differences indicating net proximally directed epimuscular myofascial loads acting on EDL at lower DF lengths and net distally directed loads at higher DF lengths, (4) decrease in TA + EHL total (maximally 50%) and passive (maximally 66.5%) forces and (5) decrease in PER total force (maximally 51.3%). It is concluded that substantial inter-antagonistic epimuscular myofascial force transmission occurs between deep flexor, anterior crural and peroneal muscles.In the light of our present results and recently reported evidence on inter-antagonistic interaction between anterior crural, peroneal and triceps surae muscles, we concluded that epimuscular myofascial force transmission is capable of causing major effects within the entire lower leg of the rat. Implications of such large scale myofascial force transmission are discussed and expected to be crucial to muscle function in healthy, as well as pathological conditions.  相似文献   

17.
To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P < or = 0.05) in vastus lateralis than in triceps and deltoid as was the activity of oxidative enzymes. Net muscle glycogen utilization was similar in vastus lateralis and triceps ( approximately 50%) but less in deltoid (likely reflecting less recruitment of deltoid), while muscle lactate accumulation was approximately 55% higher (P < or = 0.05) in triceps than vastus lateralis. Exercise induced (P < or = 0.05) dephosphorylation of both PDH-E1 alpha site 1 and site 2 in all three muscles, but it was more pronounced at PDH-E1 alpha site 1 in triceps than in vastus lateralis (P < or = 0.05). The increase in activity of the active form of PDH (PDHa) after 10 min of exercise was more marked in vastus lateralis ( approximately 246%) than in triceps ( approximately 160%), but when it was related to total PDH-E1 alpha protein content, no difference was evident. In conclusion, PDH protein content seems to be related to metabolic enzyme profile, rather than myosin heavy chain composition, and less PDH capacity in triceps is a likely contributing factor to higher lactate accumulation in triceps than in vastus lateralis.  相似文献   

18.
While endurance exercise training has been shown to enhance insulin action in skeletal muscle, the effects of high resistance strength training are less clear. The purpose of this study was to determine the rate of glucose uptake in skeletal muscle in which compensatory hypertrophy was induced by synergist muscle ablation. Basal and insulin mediated [3H] 2-deoxyglucose uptake were measured in soleus and EDL muscles using the perfused rat hindquarter preparation. Neither basal nor insulin mediated glucose uptake, when expressed per gram muscle, were enhanced in hypertrophied soleus muscles compared with control muscles, despite a twofold increase in mass (P less than 0.01). In the EDL, muscle mass increased 60% with synergist ablation (P less than 0.01), however insulin mediated glucose uptake was not different from that of control muscles. The basal rate of glucose uptake in hypertrophied EDL muscles was increased twofold over that of control muscles (P less than 0.05), possibly due to changes in neural input and/or loading. These results suggest that the stimulus for development of increased muscle mass is different from that for metabolic adaptations.  相似文献   

19.
Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344xBrown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (∼140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [14C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.  相似文献   

20.
The role of CaMK II in regulating GLUT4 expression in response to intermittent exercise was investigated. Wistar rats completed 5 x 17-min bouts of swimming after receiving 5 mg/kg KN93 (a CaMK II inhibitor), KN92 (an analog of KN93 that does not inhibit CaMK II), or an equivalent volume of vehicle. Triceps muscles that were harvested at 0, 6, or 18 h postexercise were assayed for 1) CaMK II phosphorylation by Western blot, 2) acetylation of histone H3 at the Glut4 MEF2 site by chromatin immunoprecipitation (ChIP) assay, 3) bound MEF2A at the Glut4 MEF2 cis-element by ChIP, and 4) GLUT4 expression by RT-PCR and Western blot. Compared with controls, exercise caused a twofold increase in CaMK II phosphorylation. Immunohistochemical stains indicated increased CaMK II phosphorylation in nuclear and perinuclear regions of the muscle fiber. Acetylation of histone H3 in the region surrounding the MEF2 binding site on the Glut4 gene and the amount of MEF2A that bind to the site increased approximately twofold postexercise. GLUT4 mRNA and protein increased approximately 2.2- and 1.8-fold, respectively, after exercise. The exercise-induced increases in CaMK II phosphorylation, histone H3 acetylation, MEF2A binding, and GLUT4 expression were attenuated or abolished when KN93 was administered to rats prior to exercise. KN92 did not affect the increases in pCaMK II and GLUT4. These data support the hypothesis that CaMK II activation by exercise increases GLUT4 expression via increased accessibility of MEF2A to its cis-element on the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号