首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A growing number of studies point to rapamycin as a pharmacological compound that is able to provide neuroprotection in several experimental models of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3. In addition, rapamycin exerts strong anti-ageing effects in several species, including mammals. By inhibiting the activity of mammalian target of rapamycin (mTOR), rapamycin influences a variety of essential cellular processes, such as cell growth and proliferation, protein synthesis and autophagy. Here, we review the molecular mechanisms underlying the neuroprotective effects of rapamycin and discuss the therapeutic potential of this compound for neurodegenerative diseases.  相似文献   

2.
The therapeutic mechanisms of lithium for treating bipolar mood disorder remain poorly understood. Recent studies demonstrate that lithium has neuroprotective actions against a variety of insults. Here, we studied neuroprotective effects of lithium against excitotoxicity in cultured cerebral cortical neurons. Glutamate-induced excitotoxicity in cortical neurons was exclusively mediated by NMDA receptors. Pre-treatment of cortical neurons with LiCl time-dependently suppressed excitotoxicity with maximal protection after 6 days of pre-treatment. Significant protection was observed at the therapeutic and subtherapeutic concentration of 0.2-1.6 mm LiCl with almost complete protection at 1 mM. Neuroprotection was also elicited by valproate, another major mood-stabilizer. The neuroprotective effects of lithium coincided with inhibition of NMDA receptor-mediated calcium influx. Lithium pre-treatment did not alter total protein levels of NR1, NR2A and NR2B subunits of NMDA receptors. However, it did markedly reduce the level of NR2B phosphorylation at Tyr1472 and this was temporally associated with its neuroprotective effect. Because NR2B tyrosine phosphorylation has been positively correlated with NMDA receptor-mediated synaptic activity and excitotoxicity, the suppression of NR2B phosphorylation by lithium is likely to result in the inactivation of NMDA receptors and contributes to neuroprotection against excitotoxicity. This action could also be relevant to its clinical efficacy for bipolar patients.  相似文献   

3.
锂在现代精神病学中使用超过65年,其构成了双相情感障碍(BD)长期治疗的基础。锂的许多生物学特性已经被证实,包括抗病毒、血液系统和神经系统保护作用。本文系统综述了锂对造血干细胞(HSCs)、神经干细胞(NSCs)以及诱导多能干细胞(iPSCs)作用影响的研究进展及其目前已证实的分子机制。自20世纪70年代以来,锂对保持HSCs和生长因子高水平的作用已被报道。锂可以改善HSCs的归巢能力、形成菌落的能力和自我更新的能力。关于锂对神经发生影响的研究表明,锂可促进海马齿状回的干细胞增殖,并导致施旺氏细胞有丝分裂活性增强。锂被证实与神经保护和神经营养作用相关,具体作用反映在锂可改善突触的可塑性,促进细胞存活,抑制细胞凋亡等。在临床研究中发现,锂离子的治疗可增加大脑灰质的成分,尤其作用在额叶、海马和杏仁核等位置。锂对干细胞的作用涉及多条介质和信号通路,其中最重要的介质和信号通路被认为是糖原合成酶激酶-3(GSK-3)和Wnt/β-catenin通路,另外包括调节cAMP、蛋白激酶B、磷脂酰肌醇3-激酶(pi3k)和肌醇单磷酸酶(IMP)水平的信号通路等也与锂作用有紧密的联系。锂在现阶段被利用于治疗BD和降低痴呆症患病风险的临床实验中,并对神经退行性疾病发挥有益作用。除此之外,为了研究的发病机制和锂离子在其中的作用机制,从BD患者中获得的iPSCs也被广泛应用。  相似文献   

4.
5.
6.
Brenneman DE 《Peptides》2007,28(9):1720-1726
The neuroprotective properties of vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) place these peptides in a special category of ligands that have implications for our understanding of pathological conditions as well as a potential basis for therapeutic intervention. It is remarkable that these peptides have a protective impact against such a wide variety of clinical relevant toxic substances. This protective diversity is consistent with the multiple pathways that are activated or inhibited by the action of these peptides. Although knowledge is emerging on the neuroprotective mechanisms of VIP and PACAP, it is already evident that these two peptides are not identical in their action and each peptide has multiple mechanisms that allow for neuroprotective diversity. The multiple intracellular signaling pathways and differing extracellular mediators of neuroprotection contribute to this diversity of action. In this review, examples of neuroprotective actions will be presented that serve to demonstrate the remarkable breadth of neuroprotective processes produced by VIP and PACAP.  相似文献   

7.
Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways.  相似文献   

8.
H Yang  Y Wang  VT Cheryan  W Wu  CQ Cui  LA Polin  HI Pass  QP Dou  AK Rishi  A Wali 《PloS one》2012,7(8):e41214
The medicinal plant Withania somnifera has been used for over centuries in Indian Ayurvedic Medicine to treat a wide spectrum of disorders. Withaferin A (WA), a bioactive compound that is isolated from this plant, has anti-inflammatory, immuno-modulatory, anti-angiogenic, and anti-cancer properties. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of WA and the molecular mechanisms involved. WA inhibited growth of the murine as well as patient-derived MPM cells in part by decreasing the chymotryptic activity of the proteasome that resulted in increased levels of ubiquitinated proteins and pro-apoptotic proteasome target proteins (p21, Bax, IκBα). WA suppression of MPM growth also involved elevated apoptosis as evidenced by activation of pro-apoptotic p38 stress activated protein kinase (SAPK) and caspase-3, elevated levels of pro-apoptotic Bax protein and cleavage of poly-(ADP-ribose)-polymerase (PARP). Our studies including gene-array based analyses further revealed that WA suppressed a number of cell growth and metastasis-promoting genes including c-myc. WA treatments also stimulated expression of the cell cycle and apoptosis regulatory protein (CARP)-1/CCAR1, a novel transducer of cell growth signaling. Knock-down of CARP-1, on the other hand, interfered with MPM growth inhibitory effects of WA. Intra-peritoneal administration of 5 mg/kg WA daily inhibited growth of murine MPM cell-derived tumors in vivo in part by inhibiting proteasome activity and stimulating apoptosis. Together our in vitro and in vivo studies suggest that WA suppresses MPM growth by targeting multiple pathways that include blockage of proteasome activity and stimulation of apoptosis, and thus holds promise as an anti-MPM agent.  相似文献   

9.
(?)-Epigallocatechin gallate (EGCG) has recently been shown to exert neuroprotection in a variety of neurological diseases; however, its role and the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the potential neuroprotective effects of EGCG and the possible role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in the putative neuroprotection against experimental stroke in rats. The results revealed that EGCG exhibit significant neuroprotection, as evidenced by reduced infarction size and the decrease in transferase dUTP nick end labeling-positive neurons. Furthermore, EGCG also enhanced levels of Nrf2 and its downstream ARE pathway genes such as heme oxygenase-1, glutamate-cysteine ligase modulatory subunit and glutamate-cysteine ligase regulatory subunit, as compared to control groups. In accordance with its induction of Nrf2 activation, EGCG exerted a robust attenuation of reactive oxygen species generation and an increase in glutathione content in ischemic cortex. Taken together, these results demonstrated that EGCG exerted significant antioxidant and neuroprotective effects following focal cerebral ischemia, possibly through the activation of the Nrf2/ARE signaling pathway.  相似文献   

10.
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.  相似文献   

11.
P2Y receptors activate neuroprotective mechanisms in astrocytic cells   总被引:2,自引:0,他引:2  
Mechanical or ischemic trauma to the CNS causes the release of nucleotides and other neurotransmitters into the extracellular space. Nucleotides can activate nucleotide receptors that modulate the expression of genes implicated in cellular adaptive responses. In this investigation, we used human 1321N1 astrocytoma cells expressing a recombinant P2Y2 receptor to assess the role of this receptor in the regulation of anti-apoptotic (bcl-2 and bcl-xl) and pro-apoptotic (bax) gene expression. Acute treatment with the P2Y2 receptor agonist UTP up-regulated bcl-2 and bcl-xl, and down-regulated bax, gene expression. Activation of P2Y2 receptors was also coupled to the phosphorylation of cyclic AMP responsive element binding protein that positively regulates bcl-2 and bcl-xl gene expression. Cyclic AMP responsive element decoy oligonucleotides markedly attenuated the UTP-induced increase in bcl-2 and bcl-xl mRNA levels. Activation of P2Y2 receptors induced the phosphorylation of the pro-apoptotic factor Bad and caused a reduction in bax/bcl-2 mRNA expression ratio. All these signaling pathways are known to be involved in cell survival mechanisms. Using cDNA microarray analysis and RT-PCR, P2Y2 receptors were found to up-regulate the expression of genes for neurotrophins, neuropeptides and growth factors including nerve growth factor 2; neurotrophin 3; glia-derived neurite-promoting factor, as well as extracellular matrix proteins CD44 and fibronectin precursor--genes known to regulate neuroprotection. Consistent with this observation, conditioned media from UTP-treated 1321N1 cells expressing P2Y2 receptors stimulated the outgrowth of neurites in PC-12 cells. Taken together, our results suggest an important novel role for the P2Y2 receptor in survival and neuroprotective mechanisms under pathological conditions.  相似文献   

12.
Excitotoxic neuronal damage via over-activation of the NMDA receptor has been implicated in many neurodegenerative diseases. In vitro modeling of excitotoxic injury has shown that activation of G-protein coupled receptors (GPCRs) counteracts such injury through modulation of neuronal pro-survival pathways and/or NMDA receptor signaling. We have previously demonstrated that the GPCR APJ and its endogenous neuropeptide ligand apelin can protect neurons against excitotoxicity, but the mechanism(s) of this neuroprotection remain incompletely understood. We hypothesized that apelin can promote neuronal survival by activating pro-survival signaling as well as inhibiting NMDA receptor-mediated excitotoxic signaling cascades. Our results demonstrate that (i) apelin activates pro-survival signaling via inositol trisphosphate (IP(3) ), protein kinase C (PKC), mitogen-activated protein kinase kinase 1/2 (MEK1/2), and extracellular signal-regulated kinase-1/2 (ERK1/2) to protect against excitotoxicity, and (ii) apelin inhibits excitotoxic signaling by attenuating NMDA receptor and calpain activity, and by modulating NMDA receptor subunit NR2B phosphorylation at serine 1480. These studies delineate a novel apelinergic signaling pathway that concurrently promotes survival and limits NMDA receptor-mediated injury to protect neurons against excitotoxicity. Defining apelin-mediated neuroprotection advances our understanding of neuroprotective pathways and will potentially improve our ability to develop therapeutics for excitotoxicity-associated neurodegenerative disorders.  相似文献   

13.
Glial cell-line-derived neurotrophic factor (GDNF) and neurturin (NTN) protect retinal ganglion cells (RGCs) from axotomy-induced apoptosis. It is likely that neuroprotection by GDNF or NTN in the adult central nervous system (CNS) involves indirect mechanisms and independent signal transduction events. Extracellular glutamate is a trigger of apoptosis in injured RGCs, and glutamate transporter levels can be upregulated by GDNF. Therefore, GDNF may indirectly protect RGCs by enhancing glutamate uptake in the retina. We studied the upregulation of the glutamate transporters GLAST-1 and GLT-1 by GDNF and NTN, and the intracellular pathways required for GDNF/NTN neuroprotection. GDNF required phosphoinositide-3 kinase (PI3K) and Src activity to upregulate GLAST-1 and GLT-1. NTN required PI3K activity to upregulate GLAST-1 and did not affect GLT-1 levels. PI3K activity was also important for GDNF and NTN neuroprotection following optic nerve transection. However, GDNF also required Src and mitogen-activated protein kinase activity to prevent RGC apoptosis. RNA interference demonstrated that the upregulation of GLAST-1 by GDNF and NTN is required to rescue RGCs. Thus, additional independent signal transduction events, together with the upregulation of GLT-1 by GDNF, differentiate the biological activity of GDNF from NTN. Furthermore, the upregulation of the glial glutamate transporter GLAST-1 by both factors is an indirect neuroprotective mechanism in the CNS.  相似文献   

14.
15.
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde to which humans are exposed in many situations and has been implicated in neurodegenerative diseases, such as Alzheimer’s disease. Lithium is demonstrated to have neuroprotective and neurotrophic effects in brain ischemia, trauma, neurodegenerative disorders, and psychiatric disorders. Previously we have found that acrolein induced neuronal death in HT22 mouse hippocampal cells. In this study, the effects of lithium on the acrolein-induced neurotoxicity in HT22 cells as well as its mechanism(s) were investigated. We found that lithium protected HT22 cells against acrolein-induced damage by the attenuation of reactive oxygen species and the enhancement of the glutathione level. Lithium also attenuated the mitochondrial dysfunction caused by acrolein. Furthermore, lithium significantly increased the level of phospho-glycogen synthase kinase-3 beta (GSK-3β), the non-activated GSK-3β. Taken together, our findings suggest that lithium is a protective agent for acrolein-related neurotoxicity.  相似文献   

16.
17.
Agmatine, a metabolite generated by arginine decarboxylation, has been reported as neuromodulator and neuroactive substance. Several findings suggest that agmatine displays neuroprotective effects in several models of neurodegenerative disorders, such as Parkinson’s disease (PD). It has been hypothesized that biogenic amines may be involved in neuroprotection by scavenging oxygen radicals, thus preventing the generation of oxidative stress. Mitochondrial dysfunction, that leads to a reduction of oxygen consumption, followed by activation of prolyl hydroxylase and decrease of hypoxia-inducible factor 1 alpha (HIF-1α) levels, has been demonstrated to play a role in PD pathogenesis. Using rotenone-treated differentiated SH-SY5Y cells as the in vitro PD model, we here investigated the molecular mechanisms underlying agmatine neuroprotective effects. Our results showed that the preliminary addition of agmatine induces HIF-1α activation, and prevents the rotenone-induced production of free radical species, and the activation of apoptotic pathways by inhibiting mitochondrial membrane potential decrease and caspase 3 as well as cytochrome c increase. Notably, these effects are mediated by HIF-1α, as indicated by experiments using a HIF-1α inhibitor. The present findings suggest that the treatment with agmatine is able to counteract the neuronal cell injury evoked by mitochondrial toxins.  相似文献   

18.
Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP(+) in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease.  相似文献   

19.
This study was undertaken to investigate the molecular mechanisms underlying the neuroprotective actions of lithium against glutamate excitotoxicity with a focus on the role of proapoptotic and antiapoptotic genes. Long term, but not acute, treatment of cultured cerebellar granule cells with LiCl induces a concentration-dependent decrease in mRNA and protein levels of proapoptotic p53 and Bax; conversely, mRNA and protein levels of cytoprotective Bcl-2 are remarkably increased. The ratios of Bcl-2/Bax protein levels increase by approximately 5-fold after lithium treatment for 5-7 days. Exposure of cerebellar granule cells to glutamate induces a rapid increase in p53 and Bax mRNA and protein levels with no apparent effect on Bcl-2 expression. Pretreatment with LiCl for 7 days prevents glutamate-induced increase in p53 and Bax expression and maintains Bcl-2 in an elevated state. Glutamate exposure also triggers the release of cytochrome c from the mitochondria into the cytosol. Lithium pretreatment blocks glutamate-induced cytochrome c release and cleavage of lamin B1, a nuclear substrate for caspase-3. These results strongly suggest that lithium-induced Bcl-2 up-regulation and p53 and Bax down-regulation play a prominent role in neuroprotection against excitotoxicity. Our results further suggest that lithium, in addition to its use in the treatment of bipolar depressive illness, may have an expanded use in the intervention of neurodegeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号