首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure-activity relationship study: short antimicrobial peptides.   总被引:3,自引:0,他引:3  
Many short antimicrobial peptides (< 18mer) have been identified for the development of therapeutic agents. However, Structure-activity relationship (SAR) studies about short antimicrobial peptides have not been extensively performed. To investigate the relationship between activity and structural parameters such as an alpha-helical structure, a net positive charge and a hydrophobicity, we synthesized and characterized diastereomers, scramble peptides and substituted peptides of the short antimicrobial peptide identified by combinatorial libraries. Circular dichroism (CD) spectra and in vitro activity indicated that an alpha-helical structure correlated with the antimicrobial activity and a beta-sheet structure also satisfied a structural requirement for antimicrobial activity. Most peptides consisting of L-amino acids lost antifungal activity in the presence of heat-inactivated serum, while active diastereomers and a scramble peptide with the beta-sheet structure retained antifungal activity in the same condition.  相似文献   

2.
The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting the predictive power of existing antimicrobial predictors as well as a novel general predictor, PeptideRanker, across different classes of peptides.We observed that existing antimicrobial predictors had reasonable predictive power to identify peptides of certain other classes i.e. toxin and venom peptides. We trained two general predictors of peptide bioactivity, one focused on short peptides (4–20 amino acids) and one focused on long peptides ( amino acids). These general predictors had performance that was typically as good as, or better than, that of specific predictors. We noted some striking differences in the features of short peptide and long peptide predictions, in particular, high scoring short peptides favour phenylalanine. This is consistent with the hypothesis that short and long peptides have different functional constraints, perhaps reflecting the difficulty for typical short peptides in supporting independent tertiary structure.We conclude that there are general shared features of bioactive peptides across different functional classes, indicating that computational prediction may accelerate the discovery of novel bioactive peptides and aid in the improved design of existing peptides, across many functional classes. An implementation of the predictive method, PeptideRanker, may be used to identify among a set of peptides those that may be more likely to be bioactive.  相似文献   

3.
The interaction of many lytic cationic antimicrobial peptides with their target cells involves electrostatic interactions, hydrophobic effects, and the formation of amphipathic secondary structures, such as alpha helices or beta sheets. We have shown in previous studies that incorporating approximately 30%d-amino acids into a short alpha helical lytic peptide composed of leucine and lysine preserved the antimicrobial activity of the parent peptide, while the hemolytic activity was abolished. However, the mechanisms underlying the unique structural features induced by incorporating d-amino acids that enable short diastereomeric antimicrobial peptides to preserve membrane binding and lytic capabilities remain unknown. In this study, we analyze in detail the structures of a model amphipathic alpha helical cytolytic peptide KLLLKWLL KLLK-NH2 and its diastereomeric analog and their interactions with zwitterionic and negatively charged membranes. Calculations based on high-resolution NMR experiments in dodecylphosphocholine (DPCho) and sodium dodecyl sulfate (SDS) micelles yield three-dimensional structures of both peptides. Structural analysis reveals that the peptides have an amphipathic organization within both membranes. Specifically, the alpha helical structure of the L-type peptide causes orientation of the hydrophobic and polar amino acids onto separate surfaces, allowing interactions with both the hydrophobic core of the membrane and the polar head group region. Significantly, despite the absence of helical structures, the diastereomer peptide analog exhibits similar segregation between the polar and hydrophobic surfaces. Further insight into the membrane-binding properties of the peptides and their depth of penetration into the lipid bilayer has been obtained through tryptophan quenching experiments using brominated phospholipids and the recently developed lipid/polydiacetylene (PDA) colorimetric assay. The combined NMR, FTIR, fluorescence, and colorimetric studies shed light on the importance of segregation between the positive charges and the hydrophobic moieties on opposite surfaces within the peptides for facilitating membrane binding and disruption, compared to the formation of alpha helical or beta sheet structures.  相似文献   

4.
Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources.  相似文献   

5.
New antimicrobial compounds are of major importance because of the growing problem of bacterial resistance. In this context, antimicrobial peptides have received a lot of attention. Their mechanism of action, however, is often obscure. Here, the structures of two cyclic, antimicrobial peptides from the family of arginine- and tryptophan-rich peptides determined in a membrane-mimicking environment are described. The sequence of the peptides has been obtained from a cyclic parent peptide by scrambling the amino acids. While the activity of the peptides is similar to that of the parent peptide, the structures are not. The peptides do, however, all adopt an amphiphilic structure. A comparison between the structures helps to define the requirements for the activity of these peptides.  相似文献   

6.
Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator–prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a “treasure store” of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.  相似文献   

7.
Investigating endogenous peptides and peptidases using peptidomics   总被引:1,自引:0,他引:1  
Tinoco AD  Saghatelian A 《Biochemistry》2011,50(35):7447-7461
Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters, and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been a successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome--all the peptides in a cell, tissue, or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography--tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation.  相似文献   

8.
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic α-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.  相似文献   

9.
Combining two known antimicrobial peptides (AMPs) into a hybrid peptide is one promising avenue in the design of agents with increased antibacterial activity. However, very few previous studies have considered the effect of creating a hybrid from one AMP that permeabilizes membranes and another AMP that acts intracellularly after translocating across the membrane. Moreover, very few studies have systematically evaluated the order of parent peptides or the presence of linkers in the design of hybrid AMPs. Here, we use a combination of antibacterial measurements, cellular assays and semi-quantitative confocal microscopy to characterize the activity and mechanism for a library of sixteen hybrid peptides. These hybrids consist of permutations of two primarily membrane translocating peptides, buforin II and DesHDAP1, and two primarily membrane permeabilizing peptides, magainin 2 and parasin. For all hybrids, the permeabilizing peptide appeared to dominate the mechanism, with hybrids primarily killing bacteria through membrane permeabilization. We also observed increased hybrid activity when the permeabilizing parent peptide was placed at the N-terminus. Activity data also highlighted the potential value of considering AMP cocktails in addition to hybrid peptides. Together, these observations will guide future design efforts aiming to design more active hybrid AMPs.  相似文献   

10.
The membrane interaction and solution conformation of two mutants of the β-hairpin antimicrobial peptide, protegrin-1 (PG-1), are investigated to understand the structural determinants of antimicrobial potency. One mutant, [A6,8,13,15] PG-1, does not have the two disulfide bonds in wild-type PG-1, while the other, [Δ4,18 G10] PG-1, has only half the number of cationic residues. 31P solid-state NMR lineshapes of uniaxially aligned membranes indicate that the membrane disorder induced by the three peptides decreases in the order of PG-1>[Δ4,18 G10] PG-1?[A6,8,13,15] PG-1. Solution NMR studies of the two mutant peptides indicate that [Δ4,18 G10] PG-1 preserves the β-hairpin fold of the wild-type peptide while [A6,8,13,15] PG-1 adopts a random coil conformation. These NMR results correlate well with the known activities of these peptides. Thus, for this class of peptides, the presence of a β-hairpin fold is more essential than the number of cationic charges for antimicrobial activity. This study indicates that 31P NMR lineshapes of uniaxially aligned membranes are well correlated with antimicrobial activity, and can be used as a diagnostic tool to understand the peptide-lipid interactions of these antimicrobial peptides.  相似文献   

11.
A major barrier to the use of antimicrobial peptides as antibiotics is the toxicity or ability to lyse eukaryotic cells. In this study, a 26-residue amphipathic α-helical antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLK KTVLHTLLKAISS-amide) was used as the framework to design a series of D- and L-diastereomeric peptides and study the relationships of helicity and biological activities of α-helical antimicrobial peptides. Peptide helicity was measured by circular dichroism spectroscopy and demonstrated to correlate with the hydrophobicity of peptides and the numbers of D-amino acid substitutions. Therapeutic index was used to evaluate the selectivity of peptides against prokaryotic cells. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, the hemolytic activity of peptide analogs have been significantly reduced. Compared to the parent peptide, the therapeutic indices were improved of 44-fold and 22-fold against Gram-negative and Grampositive bacteria, respectively. In addition, D- and L-diastereomeric peptides exhibited lower interaction with zwitterionic eukaryotic membrane and showed the significant membrane damaging effect to bacterial cells. Helicity was proved to play a crucial role on peptide specificity and biological activities. By simply replacing the hydrophobic or the hydrophilic amino acid residues on the non-polar or the polar face of these amphipathic derivatives of the parent peptide with D-amino acids, we demonstrated that this method could have excellent potential for the rational design of antimicrobial peptides with enhanced specificity.  相似文献   

12.
To obtain active and metabolically stable analogues, peptide backbone modifications have been incorporated into many biologically active peptides. In this study, we designed and synthesized pseudopeptides corresponding to the antimicrobial peptide that acted on the lipid membrane of the pathogen. Most pseudopeptides exhibited a longer half-life than the peptide in the presence of serum as well as a considerable activity against test bacteria and fungi. Circular dichroism spectra and retention times of the pseudopeptides helped us to elucidate the effect of the incorporation of backbone modifications on the structural parameters necessary for the activity, indicating that alpha-helical structure was the most important factor for the activity and hydrophobicity had a considerable effect on the activity. Backbone modifications employed in this study can be a useful tool for structure-activity relationship studies and the development of therapeutic agents from membrane-active antimicrobial peptides.  相似文献   

13.
Kaliocin-1 is a 31-residue peptide derived from human lactoferrin, and with antimicrobial properties that recapitulate those of its 611 amino acid parent holoprotein. As kaliocin-1 is a cysteine-stabilized peptide, it was of interest to determine whether it contained a multidimensional gamma-core signature recently identified as common to virtually all classes of disulfide-stabilized antimicrobial peptides. Importantly, sequence and structural analyses identified an iteration of this multidimensional antimicrobial signature in kaliocin-1. Further, the gamma-core motif was found to be highly conserved in the transferrin family of proteins across the phylogenetic spectrum. Previous studies suggested that the mechanism by which kaliocin-1 exerts anti-candidal efficacy depends on mitochondrial perturbation without cell membrane permeabilization. Interestingly, results of a yeast two-hybrid screening analysis identified an interaction between kaliocin-1 and mitochondrial initiation factor 2 in a Saccharomyces cerevisiae model system. Taken together, these data extend the repertoire of antimicrobial peptides that contain gamma-core motifs, and suggest that the motif is conserved within large native as well as antimicrobial peptide subcomponents of transferrin family proteins. Finally, these results substantiate the hypothesis that antimicrobial activity associated with host defense effector proteins containing a gamma-core motif may correspond to targets common to fungal mitochondria or their bacterial ancestors.  相似文献   

14.
Granular glands in the skins of frogs synthesize and secrete a remarkably diverse range of peptides capable of antimicrobial activity. These anuran skin antimicrobial peptides are commonly hydrophobic, cationic and form an amphipathic α-helix in a membrane mimetic solution. Recently, they have been considered as useful target molecules for developing new antibiotics drugs. Esculentin-1c is a 46-amino acid residue peptide isolated from skin secretions of the European frog, Rana esculenta. It displays the most potent antimicrobial activity among bioactive molecules. Esculentin-1c has the longest amino acids among all antimicrobial peptides. The present study solved the solution structure of esculentin-1c in TFE/water by NMR, for the first time. We conclude that this peptide is comprised of three α-helices with each helix showing amphipathic characteristics, which seems to be a key part for permeating into bacterial membranes, thus presenting antimicrobial activity.  相似文献   

15.
Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.  相似文献   

16.
Summary Since the discovery and isolation of the endogenous opioid peptides Leu- and Met-enkephalin, structural studies have been focused on deducing the bioactive conformation of the peptide ligands. Theoretically, linear peptides can have many different backbone conformations, yet early, X-ray studies on enkephalin and its analogues showed only two different backbone conformations: extended and single β-bend. More recent reports include a third conformation for Leu-enkephalin and constrained opioid peptides from two ‘new’ classes (i.e. cyclic and ‘allaromatic’ peptides). In this report the relationship between solid-state X-ray structure and opioid peptide activity is examined. The N-terminal amine nitrogen and the two aromatic rings have previously been identified as structural features important to the biological activity of opioid peptides. From X-ray studies we find that the distances between the centroids of the aromatic rings, and between the N-terminal amine nitrogen and the centroid of the phenylalanine ring, vary over a large range. There is a discernible relationship, however, between the separation of the two rings and their orientation that correlates with activity.  相似文献   

17.
Advances in antimicrobial peptide immunobiology   总被引:1,自引:0,他引:1  
Antimicrobial peptides are ancient components of the innate immune system and have been isolated from organisms spanning the phylogenetic spectrum. Over an evolutionary time span, these peptides have retained potency, in the face of highly mutable target microorganisms. This fact suggests important coevolutionary influences in the host-pathogen relationship. Despite their diverse origins, the majority of antimicrobial peptides have common biophysical parameters that are likely essential for activity, including small size, cationicity, and amphipathicity. Although more than 900 different antimicrobial peptides have been characterized, most can be grouped as belonging to one of three structural classes: (1) linear, often of alpha-helical propensity; (2) cysteine stabilized, most commonly conforming to beta-sheet structure; and (3) those with one or more predominant amino acid residues, but variable in structure. Interestingly, these biophysical and structural features are retained in ribosomally as well as nonribosomally synthesized peptides. Therefore, it appears that a relatively limited set of physicochemical features is required for antimicrobial peptide efficacy against a broad spectrum of microbial pathogens.During the past several years, a number of themes have emerged within the field of antimicrobial peptide immunobiology. One developing area expands upon known microbicidal mechanisms of antimicrobial peptides to include targets beyond the plasma membrane. Examples include antimicrobial peptide activity involving structures such as extracellular polysaccharide and cell wall components, as well as the identification of an increasing number of intracellular targets. Additional areas of interest include an expanding recognition of antimicrobial peptide multifunctionality, and the identification of large antimicrobial proteins, and antimicrobial peptide or protein fragments derived thereof. The following discussion highlights such recent developments in antimicrobial peptide immunobiology, with an emphasis on the biophysical aspects of host-defense polypeptide action and mechanisms of microbial resistance.  相似文献   

18.
Recent reports which show that several chemokines can act as direct microbicidal agents have drawn renewed attention to these chemotactic signalling proteins. Here we present a structure-function analysis of peptides derived from the human chemokines macrophage inflammatory protein-3α (MIP-3α/CCL20), interleukin-8 (IL-8), neutrophil activating protein-2 (NAP-2) and thrombocidin-1 (TC-1). These peptides encompass the C-terminal α-helices of these chemokines, which have been suggested to be important for the direct antimicrobial activities. Far-UV CD spectroscopy showed that the peptides are unstructured in aqueous solution and that a membrane mimetic solvent is required to induce a helical secondary structure. A co-solvent mixture was used to determine solution structures of the peptides by two-dimensional 1H-NMR spectroscopy. The highly cationic peptide, MIP-3α51-70, had the most pronounced antimicrobial activity and displayed an amphipathic structure. A shorter version of this peptide, MIP-3α59-70, remained antimicrobial but its structure and mechanism of action were unlike that of the former peptide. The NAP-2 and TC-1 proteins differ in their sequences only by the deletion of two C-terminal residues in TC-1, but intact TC-1 is a very potent antimicrobial while NAP-2 is inactive. The corresponding C-terminal peptides, NAP-250-70 and TC-150-68, had very limited and no bactericidal activity, respectively. This suggests that other regions of TC-1 contribute to its bactericidal activity. Altogether, this work provides a rational structural basis for the biological activities of these peptides and proteins and highlights the importance of experimental characterization of peptide fragments as distinct entities because their activities and structural properties may differ substantially from their parent proteins.  相似文献   

19.
Pleurocidin (Ple), a linear cationic peptide of 25 amino acids, is a member of a larger family of antimicrobial peptides present in flatfish. Previous studies have shown that Ple displays a strong antimicrobial activity against a broad spectrum of bacteria and appears to play a role in innate host defence. In this work, the genomic sequence encoding the Ple prepropeptide has been isolated from Limanda limanda and cloned in a vector under the control of a non-viral promoter (the carp β-actin promoter). By using this construction, expression of bioactive Ple was demonstrated in transformed fish cell lines continuously growing for more than 2 years. Furthermore, the study of Ple processing, maturation and secretion (by using fusion with green fluorescence protein) and the high bactericidal activity of the secreted recombinant Ple (detectable in cell supernatants without any concentration) are all reported here, as no other recombinant Ple or fish antimicrobial peptide have been expressed before to that extent. Such an overexpression of recombinant Ple or any other related antimicrobial peptide might improve the chances to develop new antibiotic agents, as well as to provide essential information about the mechanism of action, range of activity and the role in the innate immune response of antibiotic peptides.  相似文献   

20.
Kaliocin-1 is a 31-residue peptide derived from human lactoferrin, and with antimicrobial properties that recapitulate those of its 611 amino acid parent holoprotein. As kaliocin-1 is a cysteine-stabilized peptide, it was of interest to determine whether it contained a multidimensional γ-core signature recently identified as common to virtually all classes of disulfide-stabilized antimicrobial peptides. Importantly, sequence and structural analyses identified an iteration of this multidimensional antimicrobial signature in kaliocin-1. Further, the γ-core motif was found to be highly conserved in the transferrin family of proteins across the phylogenetic spectrum. Previous studies suggested that the mechanism by which kaliocin-1 exerts anti-candidal efficacy depends on mitochondrial perturbation without cell membrane permeabilization. Interestingly, results of a yeast two-hybrid screening analysis identified an interaction between kaliocin-1 and mitochondrial initiation factor 2 in a Saccharomyces cerevisiae model system. Taken together, these data extend the repertoire of antimicrobial peptides that contain γ-core motifs, and suggest that the motif is conserved within large native as well as antimicrobial peptide subcomponents of transferrin family proteins. Finally, these results substantiate the hypothesis that antimicrobial activity associated with host defense effector proteins containing a γ-core motif may correspond to targets common to fungal mitochondria or their bacterial ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号