首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe a rapid method to probe for mutations in cell surface ligand-binding proteins that affect the environment of bound ligand. The method uses fluorescence-activated cell sorting to screen randomly mutated receptors for substitutions that alter the fluorescence emission spectrum of environmentally sensitive fluorescent ligands. When applied to the yeast α-factor receptor Ste2p, a G protein-coupled receptor, the procedure identified 22 substitutions that red shift the emission of a fluorescent agonist, including substitutions at residues previously implicated in ligand binding and at additional sites. A separate set of substitutions, identified in a screen for mutations that alter the emission of a fluorescent α-factor antagonist, occurs at sites that are unlikely to contact the ligand directly. Instead, these mutations alter receptor conformation to increase ligand-binding affinity and provide signaling in response to antagonists of normal receptors. These results suggest that receptor-agonist interactions involve at least two sites, of which only one is specific for the activated conformation of the receptor.  相似文献   

2.
Mating in Saccharomyces cerevisiae is induced by the interaction of alpha-factor (W1H2W3L4Q5L6K7P8G9Q10P11M12Y13) with its cognate G protein-coupled receptor (Ste2p). Fifteen fluorescently labeled analogs of alpha-factor in which the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group was placed at the alphaN-terminus and in side-chains at positions 1, 3, 4, 6, 7, 12 and 13 were synthesized and assayed for biological activity and receptor affinity. Eleven of the analogs retained 6-60% of the biological activity of the alpha-factor, as judged using a growth arrest assay. The binding affinities depended on the position of NBD attachment in the peptide and the distance of the tag from the backbone. Derivatization of the positions 3 and 7 side-chains with the NBD group resulted in analogs with affinities of 17-35% compared with that of alpha-factor. None of the other NBD-containing agonists had sufficient receptor affinity or strong enough emission for fluorescence analysis. The position 3 and 7 analogs were investigated using fluorescence spectroscopy and collisional quenching by KI in the presence of Ste2p in yeast membranes. The results showed that the lambda max of NBD in the position 7 side-chain shifted markedly to the blue (510 nm) when separated by 4 or 6 bonds from the peptide backbone and that this probe was shielded from quenching by KI. In contrast, separation by 3, 5, 10 or more bonds resulted in lambda max ( approximately 540 nm) and collisional quenching constants consistent with increasing degrees of exposure. The NBD group in the position 3 side-chain was also found to be blue shifted (lambda max=520 nm) and shielded from solvent. These results indicate that the position 7 side-chain is likely interacting with a pocket formed by extracellular domains of Ste2p, whereas the side-chain of Trp3 is in a hydrophobic pocket possibly within the transmembrane region of the receptor.  相似文献   

3.
General anesthetics have been reported to alter the functions of G protein coupled receptor (GPCR) signaling systems. To determine whether these effects might be mediated by direct binding interactions with the GPCR or its associated G protein, we studied the binding character of halothane on mammalian rhodopsin, structurally the best understood GPCR, by using direct photoaffinity labeling with [(14)C]halothane. In the bleached bovine rod disk membranes (RDM), opsin and membrane lipids were dominantly photolabeled with [(14)C]halothane, but none of the three G protein subunits were labeled. In opsin itself, halothane labeling was inhibited by unlabeled halothane with an IC(50) of 0.9 mM and a Hill coefficient of -0.8. The stoichiometry was 1.1:1.0 (halothane:opsin molar ratio). The IC(50) values of isoflurane and 1-chloro-1,2, 2-trifluorocyclobutane were 5.0 and 15 mM, respectively. Ethanol had no effect on opsin labeling by halothane. A nonimmobilizer, 1, 2-dichlorohexafluorocyclobutane, inhibited halothane labeling by 50% at 0.05 mM. The present results demonstrate that halothane binds specifically and selectively to GPCRs in the RDM. The absence of halothane binding to any of the G protein subunits strongly suggests that the functional effects of halothane on GPCR signaling systems are mediated by direct interactions with receptor proteins.  相似文献   

4.
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were studied as a model for peptide ligand-receptor interaction. The affinities and activities of various synthetic position-10 alpha-factor analogs with Ste2p expressing mutations at residues Ser47 and Thr48 were investigated. All mutant receptors were expressed at a similar level in the cytoplasmic membrane, and their efficacies of signal transduction were similar to that of the wild-type receptor. Mutant receptors differed in binding affinity (Kd) and potency (EC50) for gene induction by alpha-factor. One mutant receptor (S47K,T48K) had dramatically reduced affinity and activity for [Lys10]- and [Orn10]alpha-factor, whereas the affinity for Saccharomyces kluyveri alpha-factor (WHWLSFSKGEPMY) was increased over 20-fold compared with that of wild-type receptor. In contrast, the affinity of [Lys10]- and [Orn10]alpha-factor was increased greatly in a S47E,T48E mutant receptor, whereas the binding of the S. kluyveri alpha-factor was abolished. The affinity of [Lys10]- and [Orn10]alpha-factor for the S47E,T48E receptor dropped 4-6-fold in the presence of 1 m NaCl, whereas the affinity of alpha-factor was not affected by this treatment. These results demonstrate that when bound to its receptor the 10th residue (Gln) of the S. cerevisiae alpha-factor is adjacent to Ser47 and Thr48 residues in the receptor and that the 10th residue of alpha-factors from two Saccharomyces species is responsible for the ligand selectivity to their cognate receptors. Based on these data, we have developed a two-dimensional model of alpha-factor binding to its receptor.  相似文献   

5.
alpha-Factor, a secreted tridecapeptide pheromone, is required for mating between the a- and alpha-haploid mating types of Saccharomyces cerevisiae. An analogue of alpha-factor, [DHP8,DHP11,Nle12] tridecapeptide (where DHP represents 3,4-dehydro-L-proline and Nle represents norleucine), was catalytically reduced in the presence of 3H gas to produce a radiolabeled pheromone with high specific activity, purity, and biological activity. Association and dissociation kinetics indicated values of 4.9 x 10(4) M-1 s-1 for k1 and 1.1 x 10(-3) s-1 for k-1. Saturation binding studies gave an equilibrium dissociation constant equal to 2.3 x 10(-8) M, which approximated the kinetically derived KD of 2.2 x 10(-8) M. These values compare favorably to the previously determined KD of 6 x 10(-9) M (Jenness, D.D., Burkholder, A.C., and Hartwell, L.H. (1986) Mol. Cell. Biol. 6, 318-320). Scatchard analysis and dissociation in the presence of excess unlabeled ligand indicated interaction with a homogeneous population of noninteracting binding sites (13,000 sites/cell). A number of alpha-factor analogues, previously investigated for their structure-function relationships (Naider, F., and Becker, J.M. (1986) CRC Crit. Rev. Biochem. 21, 225-249), were used to compete with [3H]alpha-factor binding. Four tridecapeptides having conservative amino acid replacements bound strongly to the receptor. In contrast, [Phe3]alpha-factor and 10 des-Trp1-alpha-factor analogues bound to the receptor 1-3 orders of magnitude less effectively than did alpha-factor itself. The binding constants for all active pheromones correlated with biological activity. However, des-Trp1[Phe3]alpha-factor and des-Trp1-[Ala3]alpha-factor, which were not biologically active, still competed with alpha-factor binding, indicating that these analogues fail to induce a secondary signal necessary for biological response to the pheromone. One analogue, des-Trp1-[Cha3,L-Ala9]alpha-factor (where Cha represents cyclohexylalanine), was not biologically active and did not demonstrate binding to the receptor, whereas des-Trp1-[Cha3,D-Ala9]alpha-factor was active and bound to the receptor. This finding suggests that a type II beta-turn is necessary for binding of alpha-factor to its receptor and for subsequent biological activity.  相似文献   

6.
Binding of the alpha-factor pheromone to its G-protein-coupled receptor (encoded by STE2) activates the mating pathway in MATa yeast cells. To investigate whether specific interactions between the receptor and the G protein occur prior to ligand binding, we analyzed dominant-negative mutant receptors that compete with wild-type receptors for G proteins, and we analyzed the ability of receptors to suppress the constitutive signaling activity of mutant Galpha subunits in an alpha-factor-independent manner. Although the amino acid substitution L236H in the third intracellular loop of the receptor impairs G-protein activation, this substitution had no influence on the ability of the dominant-negative receptors to sequester G proteins or on the ability of receptors to suppress the GPA1-A345T mutant Galpha subunit. In contrast, removal of the cytoplasmic C-terminal domain of the receptor eliminated both of these activities even though the C-terminal domain is unnecessary for G-protein activation. Moreover, the alpha-factor-independent signaling activity of ste2-P258L mutant receptors was inhibited by the coexpression of wild-type receptors but not by coexpression of truncated receptors lacking the C-terminal domain. Deletion analysis suggested that the distal half of the C-terminal domain is critical for sequestration of G proteins. The C-terminal domain was also found to influence the affinity of the receptor for alpha-factor in cells lacking G proteins. These results suggest that the C-terminal cytoplasmic domain of the alpha-factor receptor, in addition to its role in receptor downregulation, promotes the formation of receptor-G-protein preactivation complexes.  相似文献   

7.
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.  相似文献   

8.
Methuselah (Mth) is a G protein‐coupled receptor (GPCR) associated with longevity in Drosophila melanogaster. Previously, Stunted (Sun) was identified as a peptide agonist of Mth. Here, we identify two additional activators of Mth signaling: Drosophila Sex Peptide (SP) and a novel peptide (Serendipitous Peptide Activator of Mth, SPAM). Minimal functional sequences and key residues were identified from Sun and SPAM by studying truncation and alanine‐scanning mutations. These peptide agonists share little sequence homology and illustrate the promiscuity of Mth for activation. mth mutants exhibit no defects in behaviors controlled by SP, casting doubt on the biological significance of Mth activation by any of these agonists, and illustrating the difficulty in applying in vitro studies to their relevance in vivo. Future studies of Mth ligands will help further our understanding of the functional interaction of agonists and GPCRs.  相似文献   

9.
The ribosomal protein L30 from yeast Saccharomyces cerevisiae auto-regulates its own synthesis by binding to a structural element in both its pre-mRNA and its mRNA. The three-dimensional structures of L30 in the free (f L30) and the pre-mRNA bound (b L30) forms have been solved by nuclear magnetic resonance spectroscopy. Both protein structures contain four alternating alpha-helices and four beta-strands segments and adopt an overall topology that is an alphabetaalpha three-layer sandwich, representing a unique fold. Three loops on one end of the alphabetaalpha sandwich have been mapped as the RNA binding site on the basis of structural comparison, chemical shift perturbation and the inter-molecular nuclear Overhauser effects to the RNA. The structural and dynamic comparison of f L30 and b L30 reveals that local dynamics may play an important role in the RNA binding. The fourth helix in b L30 is longer than in f L30, and is stabilized by RNA binding. The exposed hydrophobic surface that is buried upon RNA binding may provide the energy necessary to drive secondary structure formation, and may account for the increased stability of b L30.  相似文献   

10.
C Dietzel  J Kurjan 《Cell》1987,50(7):1001-1010
We have identified the SCG1 gene by its ability to suppress the pheromone-supersensitive sst2-1 mutation. The nucleotide sequence of SCG1 suggests that it encodes a 54 kd protein homologous to the alpha subunit of the vertebrate G proteins transducin, Gs, Gi, and Go. SCG1 expression and function are haploid-specific; haploid scg1 cells grow into very small colonies consisting of large, abnormally shaped cells, whereas a/alpha scg1/scg1 diploids show wild-type morphology, growth, and sporulation. We postulate that the SCG1 product is involved in the pheromone response pathway, and propose two models for the function of the SCG1 product. Expression of the rat alpha s gene in yeast partially complements both the sst2 and scg1 defects, indicating a high level of conservation of sequence and function between SCG1 and mammalian G alpha subunits.  相似文献   

11.
A substance P (SP) analog, [D-Pro4,D-Trp7,9,10] SP4-11, is known to inhibit the actions of various structurally unrelated messenger molecules as well as SP. Our studies on the effects of this peptide on the regulation of purified G proteins by receptor showed that at least some of the biological effects of the peptide can be explained by the ability of the peptide to block the activation of G proteins by receptors. Here we report that a novel truncated SP-related peptide, pGlu-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH2, inhibited the activation of G(i) or G(o) by M2 muscarinic cholinergic receptor (M2 mAChR) or of Gs by beta-adrenergic receptor in the reconstituted phospholipid vesicles, assayed by receptor-promoted GTP hydrolysis. The inhibition by the peptide was apparently reversible and competitive with respect to receptor binding to G proteins; the inhibition could be overcome by increasing the concentration of receptor in the vesicles and was not altered by changes in the concentration of G protein. The competing effects of the peptide were used to analyze the effect of agonist on receptor-G protein interaction. The concentration change of muscarinic agonist did not alter the inhibitory effects of the peptide on M2 mAChR-promoted GTPase by G(o), which is consistent with the idea that agonist increases the regulatory efficiency of the receptor but does not alter its affinity for G proteins. This new group of compounds (G protein antagonists) is a promising tool to study receptor-G protein interaction quantitatively.  相似文献   

12.
The interaction of the serum albumin binding domain from streptococcal protein G to serum albumins isolated from different species was investigated. The highest affinity to protein G was found for serum albumins from rat, man and mouse. A medium binding was found for serum albumin from rabbit, cow, hen and horse, while little or no binding was found for ovalbumin and serum albumin from sheep. The interaction between human serum albumin and protein G showed rapid binding kinetics at the temperatures 7, 22 and 37 degrees C. Furthermore, the ability of different serum albumins to function as affinity ligands when covalently coupled to a solid support was tested. The results show that protein G derivatives could be eluted at different pH depending on the origin of the serum albumin. It was also possible to elute the streptococcal receptor efficiently from the mouse serum albumin matrix with human serum albumin. Based on these results, a gene fusion system for recovery of sensitive proteins by affinity purification is described, where high yields are obtained under mild elution conditions.  相似文献   

13.
Coulton AT  Stelzer JE 《Biochemistry》2012,51(15):3292-3301
Cardiac myosin binding protein C (c-MyBPC) is a thick filament protein that is expressed in cardiac sarcomeres and is known to interact with myosin and actin. While both structural and regulatory roles have been proposed for c-MyBPC, its true function is unclear; however, phosphorylation has been shown to be important. In this study, we investigate the effect of c-MyBPC and its phosphorylation on two key steps of the cross-bridge cycle using fast reaction kinetics. We show that unphosphorylated c-MyBPC complexed with myosin in 1:1 and 3:1 myosin:c-MyBPC stoichiometries regulates the binding of myosin to actin (K(D)) cooperatively (Hill coefficient, h) (K(D) = 16.44 ± 0.33 μM, and h = 9.24 ± 1.34; K(D) = 11.48 ± 0.75 μM, and h = 3.54 ± 0.67) and significantly decelerates the ATP-induced dissociation of myosin from actin (K(1)k(+2) values of 0.12 ± 0.01 and 0.22 ± 0.01 M(-1) s(-1), respectively, compared with a value of 0.42 ± 0.01 M(-1) s(-1) for myosin alone). Phosphorylation of c-MyBPC abolished the regulation of the association phase (K(1)k(+2) values of 0.32 ± 0.02 and 0.33 ± 0.01 M(-1) s(-1) at 1:1 and 3:1 myosin:c-MyBPC ratios, respectively) and also accelerated the dissociation of myosin from actin (K(1)k(+2) values of 0.23 ± 0.01 and 0.29 ± 0.01 M(-1) s(-1) at a 1:1 and 3:1 myosin:c-MyBPC ratios, respectively) relative to the dissociation of myosin from actin in the presence of unphosphorylated c-MyBPC. These results indicate a direct effect of c-MyBPC on cross-bridge kinetics that is independent of the thin filament that together with its phosphorylation provides a mechanism for fine-tuning cross-bridge behavior to match the contractile requirements of the heart.  相似文献   

14.
G protein-coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization.  相似文献   

15.
16.
The α-mating pheromone receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae is a G protein-coupled receptor (GPCR) that is homologous to the large family of GPCRs that mediate multiple types of signal transduction in mammals. We have screened libraries of mutant receptors to identify dominant negative alleles that are capable of interfering with the function of a co-expressed normal receptor. Two dominant negative alleles have been recovered in this manner. In addition, we find that previously isolated loss-of-function mutations in the α-factor receptor exhibit dominant negative effects. Detection of the dominant effects requires high-level expression of the mutant receptors but does not require a high ratio of mutant to normal receptors. Cellular levels of the normal receptors are not affected by co-expression of the dominant negative alleles. Expression of the mutant receptors does not interfere with constitutive signaling in a strain that lacks the G protein α subunit encoded by GPA1, indicating that interference with signaling occurs at the level of the receptor or the interacting G protein. Expression of increased levels of G protein subunits partially reverses the dominant negative effects. The dominant negative behavior of the mutant receptors is diminished by deletion of the SST2 gene, which encodes an RGS (Regulator of G protein Signaling) protein involved in desensitization of pheromone signaling. The most likely explanation for the dominant negative effects of the mutations appears to be the existence of an interaction between unactivated receptors and the trimeric G protein that titrates the G protein away from the normal receptors or renders the G protein insensitive to receptor activation. This interaction appears to be mediated by the SST2 gene product. Received: 15 January 1999 / Accepted: 25 March 1999  相似文献   

17.
18.
19.
20.
Corticotroph-derived glycoprotein hormone (CGH), also referred to as thyrostimulin, is a noncovalent heterodimer of glycoprotein hormone alpha 2 (GPHA2) and glycoprotein hormone beta 5 (GPHB5). Here, we demonstrate that both subunits of CGH are expressed in the corticotroph cells of the human anterior pituitary, as well as in skin, retina, and testis. CGH activates the TSH receptor (TSHR); (125)I-CGH binding to cells expressing TSHR is saturable, specific, and of high affinity. In competition studies, unlabeled CGH is a potent competitor for (125)I-TSH binding, whereas unlabeled TSH does not compete for (125)I-CGH binding. Binding and competition analyses are consistent with the presence of two binding sites on the TSHR transfected baby hamster kidney cells, one that can interact with either TSH or CGH, and another that binds CGH alone. Transgenic overexpression of GPHB5 in mice produces elevations in serum T(4) levels, reductions in body weight, and proptosis. However, neither transgenic overexpression of GPHA2 nor deletion of GPHB5 produces an overt phenotype in mice. In vivo administration of CGH to mice produces a dose-dependent hyperthyroid phenotype including elevation of T(4) and hypertrophy of cells within the inner adrenal cortex. However, the distinctive expression patterns and binding characteristics of CGH suggest that it has endogenous biological roles that are discrete from those of TSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号