首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pentose phosphate pathway has been studied in Trypanosoma cruzi, Clone CL Brener. Functioning of the pathway was demonstrated in epimastigotes by measuring the evolution of (14)CO(2) from [1-(14)C] or [6-(14)C]D-glucose. Glucose consumption through the PPP increased from 9.9% to 20.4% in the presence of methylene blue, which mimics oxidative stress. All the enzymes of the PPP are present in the four major developmental stages of the parasite. Subcellular localisation experiments suggested that the PPP enzymes have a cytosolic component, predominant in most cases, although all of them also seem to have organellar localisation(s).  相似文献   

2.
Helicobacter pylori is the primary cause of gastritis and peptic ulcer disease and is known to infect greater than 50% of the world's population. It is also known to lead to the onset of gastric cancer and unless treated, lasts throughout life in most individuals. Mouse models of H. pylori infection have improved our ability to study this organism and can be used to investigate the host mucosal response to the infection, particularly the early events postinoculation. Previous studies have shown that H. pylori infection leads to an increased production of reactive oxygen species within the gastric mucosa which are thought to play a major role in the mediation of associated disease. Recent studies have shown differences in the availability of an important antioxidant, glutathione, during chronic H. pylori infection. The availability of glutathione is primarily controlled by the activity of the oxidative pentose pathway. This review proposes that the severity of inflammation and damage associated with H. pylori infection is dependent on the ability of mucosal cells to counteract the increased load of reactive oxygen species. It is hypothesized that the oxidative pentose pathway and glutathione availability are important factors modulating this response. It is suggested that the therapeutic regulation of glutathione availability could provide a novel method for preventing or reducing the damage caused during H. pylori infection.  相似文献   

3.
To evaluate the strategy of supplying ribose 5-phosphate to the purine-nucleotide pathway exclusively via the nonoxidative route, the glucose 6-phosphate dehydrogenase gene zwf was disrupted in inosine- and 5′-xanthylic acid-producers of Corynebacterium ammoniagenes. In both producers, interruption of the oxidative route caused a decrease in production yields of about 50%. Attempts to increase the capacity of the nonoxidative route through overexpression of the transketolase or transaldolase gene in the zwf mutants led to no discernable effects on production, indicating that, in C. ammoniagenes, the nonoxidative route alone cannot provide sufficient ribose 5-phosphate for high-level production, although nonoxidative synthesis of the precursor is possible. Electronic Publication  相似文献   

4.
5.
6.
Saccharomyces cerevisiae is able to ferment xylose, when engineered with the enzymes xylose reductase (XYL1) and xylitol dehydrogenase (XYL2). However, xylose fermentation is one to two orders of magnitude slower than glucose fermentation. S. cerevisiae has been proposed to have an insufficient capacity of the non-oxidative pentose phosphate pathway (PPP) for rapid xylose fermentation. Strains overproducing the non-oxidative PPP enzymes ribulose 5-phosphate epimerase (EC 5.1.3.1), ribose 5-phosphate ketol isomerase (EC 5.3.1.6), transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1), as well as all four enzymes simultaneously, were compared with respect to xylose and xylulose fermentation with their xylose-fermenting predecessor S. cerevisiae TMB3001, expressing XYL1, XYL2 and only overexpressing XKS1 (xylulokinase). The level of overproduction in S. cerevisiae TMB3026, overproducing all four non-oxidative PPP enzymes, ranged between 4 and 23 times the level in TMB3001. Overproduction of the non-oxidative PPP enzymes did not influence the xylose fermentation rate in either batch cultures of 50 g l(-1) xylose or chemostat cultures of 20 g l(-1) glucose and 20 g l(-1) xylose. The low specific growth rate on xylose was also unaffected. The results suggest that neither of the non-oxidative PPP enzymes has any significant control of the xylose fermentation rate in S. cerevisiae TMB3001. However, the specific growth rate on xylulose increased from 0.02-0.03 for TMB3001 to 0.12 for the strain overproducing only transaldolase (TAL1) and to 0.23 for TMB3026, suggesting that overproducing all four enzymes has a synergistic effect. TMB3026 consumed xylulose about two times faster than TMB30001 in batch culture of 50 g l(-1) xylulose. The results indicate that growth on xylulose and the xylulose fermentation rate are partly controlled by the non-oxidative PPP, whereas control of the xylose fermentation rate is situated upstream of xylulokinase, in xylose transport, in xylose reductase, and/or in the xylitol dehydrogenase.  相似文献   

7.
Cerebral pentose phosphate pathway (PPP) plays a role in the biosynthesis of macromolecules, antioxidant defense and neurotransmitter metabolism. Studies on this potentially important pathway have been hampered by the inability to easily quantitate its activity, particularly in vivo. In this study we review the use of [1,6-13C2,6,6-2H2]glucose for measuring the relative activities of the PPP and glycolysis in a single incubation in cultured neurons and in vivo, when combined with microdialysis techniques. PPP activity in primary cerebrocortical cultures and in the caudate putamem of the rat in vivo was quantitated from data obtained by GC/MS analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose. Exposure of cultures to H2O2 resulted in stimulation of PPP activity in a concentration-dependent fashion and subsequent cell death. Chelation of iron during H2O2 exposure exerted a protective effect thus implicating the participation of the Fenton reaction in mediating damage caused by the oxidative insult. Partial inhibition of glutathione peroxidase, but not catalase, was extremely toxic to the cultures reflecting the pivotal role of GPx in H2O2 detoxification. These results demonstrate the ability to dynamically monitor PPP activity and its response to oxidative challenges and should assist in facilitating our understanding of antioxidant pathways in the CNS. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

8.
Abstract Laminin, the major glycoprotein of basement membranes, was shown to be bound by the human gastric pathogen Helicobacter pylori . Binding of 125I-laminin by strain 17874 was time-dependent, specific and saturable. Scatchard analysis of specific binding indicated about 2000 binding sites per cell with a dissociation constant of 8.5 pM. Treatment of the cells by heat (80°) and with proteolytic enzymes drastically reduced laminin binding, suggesting that the laminin receptors are surface proteins. Some highly glycosylated glycoproteins inhibited laminin binding by 50%. Furthermore, N -acetylneuraminyllactose decreased laminin binding by 70% and neuraminidase treatment of laminin by 50%, while a recombinant B1 chain of laminin, containing high-mannose type oligosaccharides, inhibited binding by only 25%. This suggests that terminal sialic acids on laminin compete for a specific sugar binding protein(s) on H. pylori cells.  相似文献   

9.
Abstract Helicobacter pylori is a bacterial pathogen of humans that infects the gastric mucosa. This infection has been associated with gastritis, peptic ulcers, and gastric carcinomas. Diverse in vitro studies have described efficient adherence of H. pylori to different types of epithelial cells. Because of its varied effects on host cells, we have analysed signal transduction events in H. pyfori -infected epithelial cells. Our results show that H. pylori induces an increase in inositol phosphates in all cultured epithelial cells used, including HeLa, Henle 407, Hep-2, and the human gastric adenocarcinoma cell line AGS. Bacterial growth medium supernatants induce a similar response in the host cell. The increase in inositol phosphates is not related to redistribution of cytoskeletal proteins such as actin or α-actinin nor tyrosine-phosphorylation of host cell proteins. The inositol phosphate increase is also observed in cells infected with low or non-adherent H. pylori mutants or mutants defective in the vacuolating toxin or urease holoenzyme. These results indicate that inositol phosphate release in H. pytori -infected cells is not dependent on bacterial adherence, and that a soluble bacterial factor, but not the vacuolating toxin or urease holoenzyme, mediates such an effect.  相似文献   

10.
Changes in the content of fructose-2,6-bisphosphate, a modulator of glycolytic flux, also affect other metabolic fluxes such as the non-oxidative pentose phosphate pathway. Since this is the main source of precursors for biosynthesis in proliferating cells, PFK-2/FBPase-2 has been proposed as a potential target for neoplastic treatments. Here we provide evidence that cells with a low content of fructose-2,6-bisphosphate have a lower energy status than controls, but they are also less sensitive to oxidative stress. This feature is related to the activation of the oxidative branch of the pentose phosphate pathway and the increased production of NADPH.  相似文献   

11.
The aim of this work was to investigate whether the pentose phosphate pathway provides reducing power for lignin synthesis. Explants of the stem of Coleus blumei and the storage tissue of Helianthus tuberosus were cultured for 4 days on media which caused extensive lignification. [3-3H]-glucose and either [3-14C]- or [U-14C]-glucose were supplied to such 4-day-cultured explants, and also to the roots of 5-day-old seedlings of Pisum sativum. Significant amounts of 3H and 14C were recovered in syringaldehyde, vanillin, p-hydroxybenzaldehyde, and ligothio-glycollic acid from the explants of Coleus and Helianthus; and in vanillin, p-hydroxybenzaldehyde, and milled-wood lignin from pea roots. The 3H/14C ratios in these derivatives and preparations of lignin are held to indicate that much of the reducing power for lignin synthesis comes from the pentose phosphate pathway.  相似文献   

12.
Gao XX  Ge HM  Zheng WF  Tan RX 《Helicobacter》2008,13(2):103-111
Background:  Helicobacter pylori , the human pathogenic gram-negative microaerophilic bacterium, causes chronic gastric infection in more than half of the human population regardless of race. The infection of microbe is not yet controllable to pose a substantial public health impact and a growing social burden. The management of H. pylori infection primarily necessitates accurate and timely diagnosis at case level, on-demand supervision of pathologic progression, and reliable evaluation of the impact of pharmacologic interventions on the patients' population.
Methods:  The characterization of H. pylori infection on gerbils model was performed by metabolic profiling, employing 1H NMR spectroscopy compounding multivariate pattern recognition strategies. In the same manner, urine samples were individually collected from 10 gerbils infected with H. pylori GS13, and from 10 uninfected control animals equally accessible to feed and water.
Results:  The resultant metabolic profiles indicate that H. pylori infection disturbs carbohydrate metabolism to elevate the levels of α- and β-glucose, and cis -aconitate (a TCA cycle intermediate). In addition to the energy metabolism alteration, the colonization of H. pylori in gerbil stomach generates a remarkable deviation of amino acid metabolism as indicated by depletion of taurine and arginine, and elevation of proline and glutamine in the animal urine. Moreover, the H. pylori infection modifies the gut microbiota as highlighted by a range of microbial-related metabolites such as indoxyl sulfate and hippurate.
Conclusions:  These findings demonstrate that the 1H NMR-based urine metabolic profiling is a promising technique capable of providing an accurate, noninvasive, and rapid diagnosis of H. pylori infection.  相似文献   

13.
幽门螺杆菌动物模型用于HP相关疾病和HP疫苗作用的研究。常规实验动物包括悉生猪、悉生狗、非人类灵长动物、猫、雪貂、小鼠、大鼠、沙鼠等。猫螺杆菌和雪貂螺杆菌感染也被用于模型研究。最近,转基因小鼠和基因敲除小鼠也被用作幽门螺杆菌动物模型研究。  相似文献   

14.
Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.  相似文献   

15.
We have isolated several mutants ofSaccharomyces cerevisiae that are sensitive to oxidative stress in a screen for elevated sensitivity to hydrogen peroxide. Two of the sixteen complementation groups obtained correspond to structural genes encoding enzymes of the pentose phosphate pathway. Allelism of thepos10 mutation (POS forperoxidesensitivity) to thezwf1/met1 mutants in the structural gene for glucose 6-phosphate dehydrogenase was reported previously. The second mutation,pos18, was complemented by transformation with a yeast genomic library. The open reading frame of the isolated gene encodes 238 amino acids. No detectable ribulose 5-phosphate epimerase activity was found in thepos18 mutant, suggesting that the corresponding structural gene is affected in this mutant. For that reason the gene was renamedRPE1 (forribulose 5-phosphateepimerase).RPE1 was localized to chromosome X. The predicted protein has a molecular mass of 25 966 Daltons, a codon adaptation index (CAI) of 0.32, and an isoelectric point of 5.82. Database searches revealed 32 to 37% identity with ribulose 5-phosphate epimerases ofEscherichia coli, Rhodospirillum rubrum, Alcaligenes eutrophus andSolanum tuberosum. We have characterizedRPE1 by testing enzyme activities inrpe1 deletion mutants and in strains that overexpressRPE1, and compared the hydrogen peroxide sensitivity ofrpe1 mutants to that of other mutants in the pentose phosphate pathway. Interestingly, all mutants tested (glucose 6-phosphate dehydrogenase, gluconate 6-phosphate dehydrogenase, ribulose 5-phosphate epimerase, transketolase, transaldolase) are sensitive to hydrogen peroxide.  相似文献   

16.
The bacterium Helicobacter pylori causes peptic ulcers and gastric cancer in human beings by mechanisms yet not fully understood. H. pylori produces urease which neutralizes the acidic medium permitting its survival in the stomach. We have previously shown that ureases from jackbean, soybean or Bacillus pasteurii induce blood platelet aggregation independently of their enzyme activity by a pathway requiring platelet secretion, activation of calcium channels and lipoxygenase‐derived eicosanoids. We investigated whether H. pylori urease displays platelet‐activating properties and defined biochemical pathways involved in this phenomenon. For that the effects of purified recombinant H. pylori urease (HPU) added to rabbit platelets were assessed turbidimetrically. ATP secretion and production of lipoxygenase metabolites by activated platelets were measured. Fluorescein‐labelled HPU bound to platelets but not to erythrocytes. HPU induced aggregation of rabbit platelets (ED50 0.28 μM) accompanied by ATP secretion. No correlation was found between platelet activation and ureolytic activity of HPU. Platelet aggregation was blocked by esculetin (12‐lipoxygenase inhibitor) and enhanced ~3‐fold by indomethacin (cyclooxygenase inhibitor). A metabolite of 12‐lipoxygenase was produced by platelets exposed to HPU. Platelet responses to HPU did not involve platelet‐activating factor, but required activation of verapamil‐inhibitable calcium channels. Our data show that purified H. pylori urease activates blood platelets at submicromolar concentrations. This property seems to be common to ureases regardless of their source (plant or bacteria) or quaternary structure (single, di‐ or tri‐chain proteins). These properties of HPU could play an important role in pathogenesis of gastrointestinal and associated cardiovascular diseases caused by H. pylori.  相似文献   

17.
The role of the oxidative pentose phosphate (PP) pathway in the dormancy-breaking of cocklebur (Xanthium pennsylvanicum Wallr.) seeds was investigated. D-[1-14C]-glucose or D-[6-14C]-glucose was fed to dormant and non-dormant lower seeds or to their axial or cotyledonary segments which were imbibed for different durations, and C6/C1 ratios of respired 14CO2 as an index of the PP pathway activity were calculated. Contrary to expectation, there was no significant difference in the C6/C1 ratios between the dormant and non-dormant seeds or segments during a water imbition period of 24 h, although the PP pathway actually operated already in an early stage of water imbibition. Also concerning the activities of G6PDH and 6PGDH, the key enzymes of this pathway, no difference between the dormant and non-dormant seeds was found. It was thus concluded that, unlike other seeds, there is no contribution of the PP pathway to the regulation of dormancy of the cocklebur seed.  相似文献   

18.
19.
Current (13)C labeling experiments for metabolic flux analysis (MFA) are mostly limited by either the requirement of isotopic steady state or the extremely high computational effort due to the size and complexity of large metabolic networks. The presented novel approach circumvents these limitations by applying the isotopic non-stationary approach to a local metabolic network. The procedure is demonstrated in a study of the pentose phosphate pathway (PPP) split-ratio of Penicillium chrysogenum in a penicillin-G producing chemostat-culture grown aerobically at a dilution rate of 0.06h(-1) on glucose, using a tracer amount of uniformly labeled [U-(13)C(6)] gluconate. The rate of labeling inflow can be controlled by using different cell densities and/or different fractions of the labeled tracer in the feed. Due to the simplicity of the local metabolic network structure around the 6-phosphogluconate (6pg) node, only three metabolites need to be measured for the pool size and isotopomer distribution. Furthermore, the mathematical modeling of isotopomer distributions for the flux estimation has been reduced from large scale differential equations to algebraic equations. Under the studied cultivation condition, the estimated split-ratio (41.2+/-0.6%) using the novel approach, shows statistically no difference with the split-ratio obtained from the originally proposed isotopic stationary gluconate tracing method.  相似文献   

20.
The fraction of glucose 6-phosphate metabolism in isolated intact chloroplasts of Pisum sativum in the dark that occurs via the oxidative pentose phosphate pathway has been estimated from the distribution of 14C from specifically labelled glucose-[14C] supplied to the chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号