首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The LET-60 (Ras)/LIN-45 (Raf)/MPK-1 (MAP kinase) signaling pathway plays a key role in the development of multiple tissues in Caenorhabditis elegans. For the most part, the identities of the downstream genes that act as the ultimate effectors of MPK-1 signaling have remained elusive. A unique allele of mpk-1, ga111, displays a reversible, temperature-sensitive, tissue-specific defect in progression through meiotic prophase I. We performed gene expression profiling on mpk-1(ga111) animals to identify candidate downstream effectors of MPK-1 signaling in the germ line. This analysis delineated a cohort of genes whose expression requires MPK-1 signaling in germ cells in the pachytene stage of meiosis I. RNA in situ hybridization analysis shows that these genes are expressed in the germ line in an MPK-1-dependent manner and have a spatial expression pattern consistent with the location of activated MPK-1. We found that one MPK-1 signaling-responsive gene encoding a C2H2 zinc finger protein plays a role in meiotic chromosome segregation downstream of MPK-1. Additionally, discovery of genes responsive to MPK-1 signaling permitted us to order MPK-1 signaling relative to several events occurring in pachytene, including EFL-1/DPL-1 gene regulation and X chromosome reactivation. This study highlights the utility of applying global gene expression methods to investigate genes downstream of commonly used signaling pathways in vivo.  相似文献   

2.
Maintaining genome stability in the germline is thought to be an evolutionarily ancient role of the p53 family. The sole Caenorhabditis elegans p53 family member CEP-1 is required for apoptosis induction in meiotic, late-stage pachytene germ cells in response to DNA damage and meiotic recombination failure. In an unbiased genetic screen for negative regulators of CEP-1, we found that increased activation of the C. elegans ERK orthologue MPK-1, resulting from either loss of the lip-1 phosphatase or activation of let-60 Ras, results in enhanced cep-1-dependent DNA damage induced apoptosis. We further show that MPK-1 is required for DNA damage-induced germ cell apoptosis. We provide evidence that MPK-1 signaling regulates the apoptotic competency of germ cells by restricting CEP-1 protein expression to cells in late pachytene. Restricting CEP-1 expression to cells in late pachytene is thought to ensure that apoptosis doesn't occur in earlier-stage cells where meiotic recombination occurs. MPK-1 signaling regulates CEP-1 expression in part by regulating the levels of GLD-1, a translational repressor of CEP-1, but also via a GLD-1-independent mechanism. In addition, we show that MPK-1 is phosphorylated and activated upon ionising radiation (IR) in late pachytene germ cells and that MPK-1-dependent CEP-1 activation may be in part direct, as these two proteins interact in a yeast two-hybrid assay. In summary, we report our novel finding that MAP kinase signaling controls CEP-1-dependent apoptosis by several different pathways that converge on CEP-1. Since apoptosis is also restricted to pachytene stage cells in mammalian germlines, analogous mechanisms regulating p53 family members are likely to be conserved throughout evolution.  相似文献   

3.
4.
5.
Lee MH  Ohmachi M  Arur S  Nayak S  Francis R  Church D  Lambie E  Schedl T 《Genetics》2007,177(4):2039-2062
The raison d'etre of the germline is to produce oocytes and sperm that pass genetic material and cytoplasmic constituents to the next generation. To achieve this goal, many developmental processes must be executed and coordinated. ERK, the terminal MAP kinase of a number of signaling pathways, controls many aspects of development. Here we present a comprehensive analysis of MPK-1 ERK in Caenorhabditis elegans germline development. MPK-1 functions in four developmental switches: progression through pachytene, oocyte meiotic maturation/ovulation, male germ cell fate specification, and a nonessential function of promoting the proliferative fate. MPK-1 also regulates multiple aspects of cell biology during oogenesis, including membrane organization and morphogenesis: organization of pachytene cells on the surface of the gonadal tube, oocyte organization and differentiation, oocyte growth control, and oocyte nuclear migration. MPK-1 activation is temporally/spatially dynamic and most processes appear to be controlled through sustained activation. MPK-1 thus may act not only in the control of individual processes but also in the coordination of contemporaneous processes and the integration of sequential processes. Knowledge of the dynamic activation and diverse functions of MPK-1 provides the foundation for identification of upstream signaling cascades responsible for region-specific activation and the downstream substrates that mediate the various processes.  相似文献   

6.
The chromosomal program of meiotic prophase, comprising events such as laying down of meiotic cohesins, synapsis between homologs, and homologous recombination, must be preceded and enabled by the regulated induction of meiotic prophase genes. This gene regulatory program is poorly understood, particularly in organisms with a segregated germline. We characterized the gene regulatory program of meiotic prophase as it occurs in the mouse fetal ovary. By profiling gene expression in the mouse fetal ovary in mutants with whole tissue and single-cell techniques, we identified 104 genes expressed specifically in pre-meiotic to pachytene germ cells. We characterized the regulation of these genes by 1) retinoic acid (RA), which induces meiosis, 2) Dazl, which is required for germ cell competence to respond to RA, and 3) Stra8, a downstream target of RA required for the chromosomal program of meiotic prophase. Initial induction of practically all identified meiotic prophase genes requires Dazl. In the presence of Dazl, RA induces at least two pathways: one Stra8-independent, and one Stra8-dependent. Genes vary in their induction by Stra8, spanning fully Stra8-independent, partially Stra8-independent, and fully Stra8-dependent. Thus, Stra8 regulates the entirety of the chromosomal program but plays a more nuanced role in governing the gene expression program. We propose that Stra8-independent gene expression enables the stockpiling of selected meiotic structural proteins prior to the commencement of the chromosomal program. Unexpectedly, we discovered that Stra8 is required for prompt down-regulation of itself and Rec8. Germ cells that have expressed and down-regulated Stra8 are refractory to further Stra8 expression. Negative feedback of Stra8, and subsequent resistance to further Stra8 expression, may ensure a single, restricted pulse of Stra8 expression. Collectively, our findings reveal a gene regulatory logic by which germ cells prepare for the chromosomal program of meiotic prophase, and ensure that it is induced only once.  相似文献   

7.
8.
9.
10.
11.
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.  相似文献   

12.
13.
14.
Neuritin is a new neurotrophic factor discovered in a screen to identify genes involved in activity-dependent synaptic plasticity. Neuritin also plays multiple roles in the process of neural development and synaptic plasticity. The receptors for binding neuritin and its downstream signaling effectors, however, remain unclear. Here, we report that neuritin specifically increases the densities of transient outward K+ currents (IA) in rat cerebellar granule neurons (CGNs) in a time- and concentration-dependent manner. Neuritin-induced amplification of IA is mediated by increased mRNA and protein expression of Kv4.2, the main α-subunit of IA. Exposure of CGNs to neuritin markedly induces phosphorylation of ERK (pERK), Akt (pAkt), and mammalian target of rapamycin (pmTOR). Neuritin-induced IA and increased expression of Kv4.2 are attenuated by ERK, Akt, or mTOR inhibitors. Unexpectedly, pharmacological blockade of insulin receptor, but not the insulin-like growth factor 1 receptor, abrogates the effect of neuritin on IA amplification and Kv4.2 induction. Indeed, neuritin activates downstream signaling effectors of the insulin receptor in CGNs and HeLa. Our data reveal, for the first time, an unanticipated role of the insulin receptor in previously unrecognized neuritin-mediated signaling.  相似文献   

15.
16.
C Liu  W Duan  R Li  S Xu  L Zhang  C Chen  M He  Y Lu  H Wu  H Pi  X Luo  Y Zhang  M Zhong  Z Yu  Z Zhou 《Cell death & disease》2013,4(6):e676
The effect of bisphenol A (BPA) on the reproductive system is highly debated but has been associated with meiotic abnormalities. However, evidence is lacking with regard to the mechanisms involved. In order to explore the underlying mechanisms of BPA-induced meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 0, 2, 20 or 200 μg/kg body weight (bw)/day for 60 consecutive days. 17β-Estradiol (E2) was administered at 10 μg/kg bw/day as the estrogenic positive control. Treatments with 200 μg/kg bw/day of BPA and E2 significantly decreased sperm counts and inhibited spermiation, characterized by an increase in stage VII and decrease in stage VIII in the seminiferous epithelium. This was concomitant with a disruption in the progression of meiosis I and the persistence of meiotic DNA strand breaks in pachytene spermatocytes,and the ataxia–telangiectasia-mutated and checkpoint kinase 2 signal pathway was also activated; Eventually, germ cell apoptosis was triggered as evaluated by terminal dUTP nick-end labeling assay and western blot for caspase 3. Using the estrogen receptor (ER) antagonist ICI 182780, we determined that ER signaling mediated BPA-induced meiotic disruption and reproductive impairment. Our results suggest that ER signaling-mediated meiotic disruption may be a major contributor to the molecular events leading to BPA-related male reproductive disorders. These rodent data support the growing association between BPA exposure and the rapid increase in the incidence of male reproductive disorders.  相似文献   

17.
Germ cell sex is defined by factors derived from somatic cells. CYP26B1 is known to be a male sex-promoting factor that inactivates retinoic acid (RA) in somatic cells. In CYP26B1-null XY gonads, germ cells are exposed to a higher level of RA than in normal XY gonads and this activates Stra8 to induce meiosis while male-specific gene expression is suppressed. However, it is unknown whether meiotic entry by an elevated level of RA is responsible for the suppression of male-type gene expression. To address this question, we have generated Cyp26b1/Stra8 double knockout (dKO) embryos. We successfully suppressed the induction of meiosis in CYP26B1-null XY germ cells by removing the Stra8 gene. Concomitantly, we found that the male genetic program represented by the expression of NANOS2 and DNMT3L was totally rescued in about half of dKO germ cells, indicating that meiotic entry causes the suppression of male differentiation. However, half of the germ cells still failed to enter the appropriate male pathway in the dKO condition. Using microarray analyses together with immunohistochemistry, we found that KIT expression was accompanied by mitotic activation, but was canceled by inhibition of the RA signaling pathway. Taken together, we conclude that inhibition of RA is one of the essential factors to promote male germ cell differentiation, and that CYP26B1 suppresses two distinct genetic programs induced by RA: a Stra8-dependent meiotic pathway, and a Stra8-independent mitotic pathway.  相似文献   

18.
19.
As a quorum-sensing molecule for bacteria–bacteria communication, N-(3-oxododecanoyl)-homoserine lactone (C12) has been found to possess pro-apoptotic activities in various cell culture models. However, the detailed mechanism of how this important signaling molecule function in the cells of live animals still remains largely unclear. In this study, we systematically investigated the mechanism for C12-mediated apoptosis and studied its anti-tumor effect in Caenorhabditis elegans (C. elegans). Our data demonstrated that C12 increased C. elegans germ cell apoptosis, by triggering mitochondrial outer membrane permeabilization (MOMP) and elevating the reactive oxygen species (ROS) level. Importantly, C12-induced ROS increased the expression of genes critical for DNA damage response (hus-1, clk-2 and cep-1) and genes involved in p38 and JNK/MAPK signaling pathway (nsy-1, sek-1, pmk-1, mkk-4 and jnk-1). Furthermore, C12 failed to induce germ cell apoptosis in animals lacking the expression of each of those genes. Finally, in a C. elegans tumor-like symptom model, C12 significantly suppressed tumor growth through inhibiting the expression of RAS/MAPK pathway genes (let-23/EGFR, let-60/RAS, lin-45/RAF, mek-2/MEK and mpk-1/MAPK). Overall, our results indicate that DNA damage response and MAPK activation triggered by mitochondrial ROS play important roles in C12-induced apoptotic signaling in C. elegans, and RAS/MAPK suppression is involved in the tumor inhibition effect of C12. This study provides in vivo evidence that C12 is a potential candidate for cancer therapeutics by exerting its pro-apoptotic and anti-tumor effects via elevating mitochondria-dependent ROS production.  相似文献   

20.
The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号