首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive species are one of the most significant problem in freshwater ecosystems. Most common non-native freshwater species in Turkish freshwater fish fauna are Prussian Carp (Carassius gibelio), North African Catfish (Clarias gariepinus), Nile Tilapia (Oreochromis niloticus) and Topmouth Gudgeon (Pseudorasbora parva).Recent studies showed that environmental DNA could be used to detect target species inhabiting the ecosystem with higher precision and less effort compared to traditional field surveys. In this study, eDNA approach was used to investigate non-native freshwater fish species from fifteen different locations of Upper Sakarya Basin. eDNA was successfully extracted from the water samples of locations where the species were visually observed. Mean amplification rate of eDNA was calculated as 77.03%.This study is the first environmental DNA study used in detection of four of the most common invasive freshwater fish species. Results clearly indicating that eDNA surveys could be used as an important molecular tool to monitor invasive fish species in freshwater ecosystems.  相似文献   

2.
屈霄  刘晗  阳敏  辛未  王伟民  陈宇顺 《生态学报》2022,42(24):10029-10040
理解城镇的快速发展对河流鱼类群落结构的影响,是城镇河流科学管理和生物多样性保护的关键基础。本研究于2019年丰水期(8月)和枯水期(11月),选取我国城镇化典型城市-深圳域内两个处于不同城镇化程度的代表性流域,应用多重统计方法比较分析了流域间鱼类群落结构的差异,并探讨了驱动鱼类群落变异的关键环境要素。结果发现,城镇化程度高的观澜河流域其鱼类种类组成、优势类群、生物多样性指数与城镇化程度低的坪山河流域有明显差别。 具体表现为:城镇化程度高的流域土著敏感种类如异鱲、吸鳅等几近消失,优势类群为外来入侵耐受种类,其物种多样性显著低于城镇化程度低的流域(P<0.05)。同时,外来鱼类在城镇河段其数量占比平均达92.5%,广泛分布于深圳城镇河流中。在环境因素方面,城镇化程度高的观澜河流域水体理化指标总氮、总磷、氨氮、化学需氧量、生化需氧量、高锰酸盐指数均显著性高于城镇化程度低的坪山河流域(P<0.05)。基于Bray-Curtis距离的冗余分析显示:城镇用地占比和总氮是影响观澜河和坪山河流域鱼类群落差异的主要因素。城镇化进程中河流生境的改变已影响到土著鱼类的生物多样性。因此,推动以恢复土著鱼类生物多样性的河流生态治理与保护是今后水生态目标管理的重要方向。  相似文献   

3.
River regulation can advantage non-native aquatic biota at the expense of native species. Nevertheless, flow regulating structures are sometimes used with the aim of achieving positive environmental outcomes in aquatic ecosystems. In the lower River Murray, Australia, drought-induced water level recession and acid sulfate soil exposure prompted the construction of an earthen levee, isolating a section of river channel (the Goolwa weir pool (GWP)) within which water levels were managed to mitigate a risk of water body acidification. The present study aimed to determine the impact of water level management on the fish community by investigating variation in species abundance and recruitment between sites subject to water level management in the GWP and unmanaged sites in Lake Alexandrina. Prior to levee construction, in August 2009, the abundance of the non-native common carp was similar in the GWP and Lake Alexandrina. Following water level management, in December 2009 and April 2010, the abundance of common carp in the GWP was approximately 1000 and 250 times greater than abundance in Lake Alexandrina, as a result of recruitment of young-of-year fish. No native freshwater species were significantly more abundant in the GWP in August 2009, December 2009 or April 2010. The results of this study suggest that the isolation of a river reach and a managed rise in water level facilitated spawning and recruitment of a non-native fish species. As such, the ecological benefits and risks of restoration and mitigation projects that involve the construction of flow regulating structures and water level management should be carefully considered.  相似文献   

4.
Few studies have examined river fishes of Malawi. This study is one of the first to examine the stream fish assemblages on the Nyika Plateau in northern Malawi. Twenty four sites were sampled over three different periods in two river systems of the plateau. Eighteen species were collected and among these was Hippopotamyrus ansorgii, the first collection of this species in the Lake Malawi catchment. Three species, including a non-native trout, were common in the two systems studied. Correspondence analysis (CA) suggested gradients in species composition related to altitude and river type. Species succession, from a trout dominated upstream to a downstream dominated by indigenous species, was shown on the first CA axis. The second CA axis showed the assemblage of the plateau separated by river type. A direct gradient analysis method, canonical correspondence analysis (CCA), showed the importance of two stream position metrics (stream order and c-link), depth, water temperature and substrate type in determining species composition. According to variation partitioning in CCA, the spatial and temporal components respectively explained 46% and 3.6% variation in assemblage composition based on the all species data matrix, and 48.7% and 2.6% variation in assemblage composition based on the native species data matrix. The species collected were also discussed in relation to the morphological adaptations in their body forms to the environmental conditions of the streams studied.  相似文献   

5.
Positive interactions among native plant species are common in alpine habitats, particularly those where one species (nurse plant) generates microclimatic conditions that are more benign than the surrounding environment, facilitating the establishment of other species. Nonetheless, these microclimatic conditions could facilitate the establishment of non-native species as well. A conspicuous component of the alien alpine flora of the central Chilean Andes is the perennial herb Taraxacum officinale agg. (dandelion). In contrast to other alien species that are restricted to human-disturbed sites, T. officinale is frequently observed growing within native plant communities dominated by cushion plants. In this study we evaluated if T. officinale is positively associated with the cushion plant Azorella monantha. Via seedling survival experiments and gas-exchange measurements we also assessed the patterns of facilitation between cushions and dandelions, and explore the potential mechanisms of invasion by dandelions. T. officinale grows spatially positively associated with cushions of A. monantha. Survival of seedlings, as well as their net-photosynthetic rates and stomatal conductance, were higher within cushions than in open areas away from them, suggesting that the microclimatic modifications generated by this native cushion facilitates the establishment and performance of a non-native invasive species. Our results, as well as other recent studies, highlight the role of native communities in facilitating rather than constraining non-native plant invasions, particularly in stressful habitats such as alpine environments.  相似文献   

6.
We studied spatial and temporal patterns in fish species composition and diversity at the upper Juruá River located in the west Brazilian Amazon. We collected with gillnet 822 fishes belonging to 90 species in the main Juruá River, its tributaries and the floodplain lakes during wet and dry seasons. Fish abundance and species richness were greater in the dry season. During that season, fishes may be concentrated due to the low water level, being caught more easily by gillnets. There has been a trend towards a greater fish biomass caught in lakes. This might be associated with a greater environmental stability as lakes may be less subject to large variations in water level. The fish communities differed between the two seasons and between lakes and the lotic environments (main river and tributaries). Fish species from the family Curimatidae were most abundant in the lakes, while Pimelodus spp. and Hypostomus spp. predominated in the main Juruá River. Seasonal variations in fish communities may be related to differences in the migratory behavior among fish species. Such spatial and temporal patterns influencing fish community structure at the Upper Juruá Extractive Reserve must be accounted for in management and conservation strategies.  相似文献   

7.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

8.
[目的]调查北京地区鱼类多样性和群落分布及评估外来鱼种的入侵风险.[方法]选取北京地区水库、湖泊和河流3种水体类型共33个采样点,于2020年6月10—17日开展水生态监测,利用环境DNA宏条形码技术对各样点的鱼类多样性和群落结构进行监测和分析,对目前北京地区水生态系统中本地鱼种和外来鱼种进行分类汇总,并评估典型外来入...  相似文献   

9.
Salmonids were first introduced into the Chilean fresh waters in the 1880s, and c. 140 years later, they are ubiquitous across Chilean rivers, especially in the southern pristine fresh waters. This study examined the brown trout (Salmo trutta) and native taxa ecology in two adjacent but contrasting rivers of Chilean Patagonia. During spring 2016 and spring–fall 2017 we examined the variation in benthic macroinvertebrate and fish community composition and characterized fish size structure, stomach contents, and stable isotopes (δ13C and δ15N) to understand population structure, fish diet, and trophic interactions between S. trutta and native taxa. The native Galaxias maculatus (puye) dominated the fish community (74% of abundance). S. trutta was less abundant (16% of survey catch) but dominated the fish community (over 53%) in terms of biomass. S. trutta showed distinct diets (stomach content analysis) in the two rivers, and individuals from the larger river were notably more piscivorous, consuming native fish with a relatively small body size (<100-mm total length). Native fishes were isotopically distinct from S. trutta, which showed a wider isotopic niche in the smaller river, indicating that their trophic role was more variable than in the larger river (piscivorous). This study provides data from the unstudied pristine coastal rivers in Patagonia and reveals that interactions between native and introduced species can vary at very local spatial scales.  相似文献   

10.
Synopsis Spatial patterns of resource use by small-bodied fishes in the San Juan River were examined using stable isotopes. Using δ15N of fishes as an index of trophic position, our data suggest both native and non-native fishes primarily consumed macro-invertebrates. The δ13C of these fishes further suggested a detritus-based food web, from which most species fed on chironomids in low-velocity habitats. A two-way ANOVA revealed a significant interaction between trophic level of fish species and longitudinal position in the river. This interaction was primarily attributed to a decline in trophic level of non-native red shiner Cyprinella lutrensis, relative to other species, in upstream reaches of the river. In addition, ANCOVA results suggest trophic position of fishes was dependent on channel type (primary vs. secondary), as there was less variability in resource use in secondary channels. These data provided a spatial framework of trophic interactions that can be used to predict the outcome of management actions. Overall, we confirmed high overlap in resource used between native and non-native fishes. However, spatial variation in trophic interactions both longitudinally and laterally in the river present a challenge to resource managers attempting to managing entire river systems.  相似文献   

11.
The Cosumnes River is the largest stream without a major dam on its mainstem in the Sacramento–San Joaquin drainage, central California, U.S.A. We studied its fishes over a 3-year period to answer the following questions: (1) Was the native fish fauna still present? (2) Why were alien fishes so abundant in a river system with a 'natural' flow regime, which elsewhere has been shown to favor native fishes? (3) Were there assemblages of fishes that reflected environmental differences created by the underlying geology? (4) Were there features of the watershed that consistently favored native fishes or that could be managed to favor native fishes? Of the 25 species collected, 17 were alien species; 14 species (five native) were abundant or widely distributed enough to use in detailed analyses. Of the native species, only rainbow trout, Oncorhynchus mykiss, still occupied much of its native range in headwater streams. Other native species have been extirpated or persisted mainly above barriers to alien invasions. The most widely distributed alien species was redeye bass, Micropterus coosae, previously unknown from the river, whose abundance was associated with low-numbers of native species. Other aliens were found primarily in low-land habitats on the valley floor or foothills. Canonical Correspondence Analysis indicated that both native and alien species located on environmental gradients determined largely by elevation, temperature, flow, and emergent vegetation, but the associations with these variables were not strong. While most alien fishes were found in lowland sections of river flowing through agricultural regions, the general relationships between species abundance and landscape-level variables were weak. Assemblages of fishes were poorly defined mixtures of native and alien species. The strikingly distinct geological regions of the basin no longer supported distinct fish assemblages. Species distributions were highly individualistic, reflecting dynamic patterns of introductions, invasions, and local extinctions, as well as physiological tolerances and life history patterns. Most native fishes are likely to persist in the Cosumnes River only if summer flows are increased and if populations above natural barriers are protected from further invasions by alien species, especially redeye bass. General conclusions from this study include: (1) altered habitats can support native species under some circumstances; (2) new fish assemblages with characteristics of 'natural' communities are likely to develop in invaded systems; (3) restoring flow regimes to favor native fishes may require restoring minimum summer flows as well as high channel-forming flows. However, reversing or even reducing, the impact of the predatory redeye bass, pre-adapted for California streams, is probably not possible.  相似文献   

12.
13.
Native fishes worldwide have declined as a consequence of habitat loss and degradation and introduction of non-native species. In response to these declines, river restoration projects have been initiated to enhance habitat and remove introduced fishes; however, non-native fish removal is not always logistically feasible or socially acceptable. Consequently, managers often seek to enhance degraded habitat in such a way that native fishes can coexist with introduced species. We quantified dynamics of fish communities to three newly constructed side channels in the Provo River, Utah, USA, to determine if and how they promoted coexistence between native fishes (nine species) and non-native brown trout (Salmo trutta L.). Native and introduced fishes responded differently in each side channel as a function of the unique characteristics and histories of side channels. Beaver activity in two of the three side channels caused habitat differentiation or channel isolation that facilitated the establishment of native species. The third side channel had greater connectivity to and similar habitat as the main channel of the Provo River, resulting in a similar fish community to main channel habitats (i.e. dominated by brown trout with only a few native fish species). These results demonstrate the importance of understanding habitat preferences for each species in a community to guide habitat enhancement projects and the need to create refuge habitats for native fishes.  相似文献   

14.
Although the spread of non-native algae is rapidly escalating, relatively few ecological studies have been done to gauge the impacts incurred to native flora and fauna. A reduction in the dominance of a native habitat-forming macroalga due to the replacement by an introduced species can have adverse effects on the community. The non-native red alga Grateloupia turuturu, first reported in Rhode Island, USA in 1994, has since extended its southern range into eastern Long Island Sound. This large alga has the potential to impact coastal communities by altering the floristic composition important to associated flora and fauna. A comparison of algal and epifaunal assemblages was made during 2006 and 2007 between native and non-native algal communities dominated by either G. turuturu or the native, Chondrus crispus at two sites in Long Island Sound. We found that within Grateloupia-dominated habitat, there was a large decrease in overall macrophyte biomass as compared to native habitat. We also found that habitat dominated by the non-native alga reduced species richness and total abundance of invertebrates relative to nearby habitats dominated by C. crispus. In addition, we found that the dominant mesofaunal species, important to higher trophic level consumers, had greatly reduced densities in communities dominated by the non-native alga.  相似文献   

15.
16.
Environmental parameters and ichthyofauna were investigated over a 2 years period in three regions along the 200 km length of Cross River. The objective of the study was to quantify the relative importance of local environmental conditions prevailing within sampling sites and the composition and abundance of the principal fish species in the upper, middle and lower reaches of the river. Vegetation cover, size of river, flow velocity, water level, temperature, transparency, and food availability explained the observed seasonal and spatial changes in fish abundance. Forty-six species and 28 genera of fish belonging to 16 families were recorded among the 14,466 fish caught. Three fish families (Cichlidae, Bagridae, and Clariidae) yielded highest number (41.3%) of species while Denticeptidae, Protopteridae, and Osteoglossidae had the least. Oreochromis niloticus, Chrysichthys nigrodigitatus, and Clarias anguillaris numerically dominated (46.4%) catch composition. Species richness was higher for the river stretch in forest area than in savanna, and it was correlated significantly with width of the reach, water transparency, depth, and flow velocity (P < 0.001) of the river. Wet season samples were more diverse (>0.6) and had higher richness (>9.7) than those for dry season. Wet season and forest regions were therefore critical in maintaining fish stock of Cross River.  相似文献   

17.
Ecological quality assessment of non-natural water bodies is, in contrast to natural systems, less developed and requires determining biological indicators that reliably reflect environmental conditions and anthropogenic pressures. This study was motivated to propose fish indicators appropriate for assessment of reservoir ecosystems in central Europe. We analysed changes in water quality, total biomass and the taxonomic, trophic and size composition of fish communities along the longitudinal axes of four elongated, deep-valley reservoirs. Due to high nutrient inputs from their catchments, the reservoirs exhibited pronounced within-system gradients in primary productivity and water transparency. Although fish communities were similar among the reservoirs and dominated by few native species, the community structure and biomass systematically changed along the longitudinal axes of the reservoirs. The biomass and proportion of planktivores/benthivores in the fish community were highest at eutrophic sites near the river inflow and declined substantially towards deep, more oligotrophic sites close to the dam. The biomass and proportion of piscivores significantly increased downstream within the reservoirs alongside improving water quality. At species level, perch Perca fluviatilis and bream Abramis brama responded most sensitively, although in opposite directions, to the longitudinal environmental gradient. The major longitudinal changes in fish community characteristics were found to be consistent between pelagic and benthic habitats. The results of this study suggest that fish communities are appropriate indicators of eutrophication and can be used for ecological quality assessment of non-natural lentic water bodies, such as reservoirs. Moreover, our results underline the necessity to consider within-system gradients in water quality and the fish community when planning sampling programmes for deep-valley reservoirs.  相似文献   

18.
We examined changes in the distribution of 9 native and 18 introduced freshwater fishes in the south-eastern Pyrenees watershed, Iberian Peninsula, using data from 1996, 1984–1988 and historical information. This region suffers many modifications to its freshwater ecosystems that are linked to human activity in the Mediterranean regions. Fish communities, stream physical habitat and environmental degradation were assessed at 168 sites from 11 basins in 1996. Seven native species (78%) showed decline from previous data, one of which became extirpated in the first half of the 20th century. On the other hand, introduced species are expanding. As a consequence, intact native communities are increasingly rare, declining from presence in 22% of river courses in 1984–1988 to 15% in 1996. The most typical community type is a mixture of native and introduced species occupying 30% of river courses. Stream degradation seems to be the main cause of this process because fish communities differed between degraded streams and streams suffering less impact. A principal component analysis showed that water pollution and modifications to the habitat were the two anthropogenic factors that accounted for most changes in the fish community integrity. Habitat alteration, primarily through construction of dams and water diversions, has fragmented habitats and isolated native fish communities in headwater streams. Current protection measures do not offer effective conservation of threatened species and communities. A global conservation and restoration programme from an ecosystem-based approach is essential to reverse the trend affecting native freshwater fishes in this Mediterranean region.  相似文献   

19.
Patterns in spatial and seasonal distribution of fish communities were analyzed in the Río Amacuzac, Mexico, and their relationship to environmental variables and habitat characteristics. The PCA biplot of the study sites and environmental factors showed the first two axes accounting for 52.93% of the variance. The diagram showed the study sites ordination in environmental gradients. The first axis explained variables related to habitat characteristics and temperature (36.30%) and second axis arranged the sites in physicochemical and water quality environmental gradients (conductivity, dissolved oxygen, orthophosphates, ammonium, pH) displaying seasonal variation. Fifteen species were recorded, eight of them are exotic. One new record appeared for the Río Amacuzac: Pterygoplichthys disjunctivus is exotic. Study sites with highest species richness were: 5, 7 and 9 (twelve species each one); while the study sites with low species richness were 1, 2, 3 and 6 (eight species each one). Six of the species were distributed throughout the whole river. Based on the composition of the fish fauna, the study sites form two groups and the analysis of fish species displays three groups according to the Bray–Curtis index. The diagram of the canonical correspondence analysis relates environmental parameters to the abundance of fish species and showed that the first two axes exhibit 78.31% of the explained variance. Species richness had a spatial pattern associated to the introduction of exotic species for ornamental uses. According to the results of the importance value index (IVI), the dominant species were the poecilids Poeciliopsis gracilis and Heterandria bimaculata, small fishes that were introduced in the river. Río Amacuzac has a biotic alteration in the structure of fish communities due to the invasion of exotic species, representing risks to the integrity of the native fish fauna.  相似文献   

20.
杨志  唐会元  朱迪  刘宏高  万力  陶江平  乔晔  常剑波 《生态学报》2015,35(15):5064-5075
根据2010—2012年在三峡水库及其上游江段5个江段的商业性渔获物调查结果,对该区域鱼类群落结构的时空分布格局进行了分析。调查中共收集到鱼类87种,隶属于8目18科63属。沿坝前江段溯河而上至库尾以上流水江段,鱼类种类数逐渐增加。采用聚类分析(CA)和非度量多维标度(NMDS)方法对三峡水库175 m试验性蓄水期间各江段的鱼类种类组成进行分析,发现这5个调查江段的鱼类种类组成可以分为两个类群:类群Ⅰ包括秭归、巫山、云阳3个库区的江段,其鱼类种类组成在各年间的差异程度较大;而类群Ⅱ包括库尾的涪陵江段以及上游的江津江段,其鱼类种类组成在各年间差异程度较小。采用CA和NMDS方法对鱼类群落结构时空分布格局的分析结果表明,5个调查江段的鱼类群落结构在各年间可以分为不同类群;云阳与涪陵江段的鱼类群落结构的相似性逐年增加,而与秭归、巫山江段的相似性逐年减少;涪陵江段与江津江段的鱼类群落结构相似性也呈逐年减少趋势。总体而言,175m试验性蓄水对库中和库尾江段的鱼类群落结构的影响较大,但对库首以及库尾以上流水江段的影响均较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号