首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Genetics of chemotactic behavior in bacteria.   总被引:5,自引:0,他引:5  
J S Parkinson 《Cell》1975,4(3):183-188
  相似文献   

3.
Hydrodynamic interactions between two swimming bacteria   总被引:1,自引:0,他引:1  
This article evaluates the hydrodynamic interactions between two swimming bacteria precisely. We assume that each bacterium is force free and torque free, with a Stokes flow field around it. The geometry of each bacterium is modeled as a spherical or spheroidal body with a single helical flagellum. The movements of two interacting bacteria in an infinite fluid otherwise at rest are computed using a boundary element method, and the trajectories of the two interacting bacteria and the stresslet are investigated. The results show that as the two bacteria approach each other, they change their orientations considerably in the near field. The bacteria always avoided each other; no stable pairwise swimming motion was observed in this study. The effects of the hydrodynamic interactions between two bacteria on the rheology and diffusivity of a semidilute bacterial suspension are discussed.  相似文献   

4.
5.
A wall of funnels concentrates swimming bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Randomly moving but self-propelled agents, such as Escherichia coli bacteria, are expected to fill a volume homogeneously. However, we show that when a population of bacteria is exposed to a microfabricated wall of funnel-shaped openings, the random motion of bacteria through the openings is rectified by tracking (trapping) of the swimming bacteria along the funnel wall. This leads to a buildup of the concentration of swimming cells on the narrow opening side of the funnel wall but no concentration of nonswimming cells. Similarly, we show that a series of such funnel walls functions as a multistage pump and can increase the concentration of motile bacteria exponentially with the number of walls. The funnel wall can be arranged along arbitrary shapes and cause the bacteria to form well-defined patterns. The funnel effect may also have implications on the transport and distribution of motile microorganisms in irregular confined environments, such as porous media, wet soil, or biological tissue, or act as a selection pressure in evolution experiments.  相似文献   

6.
Body length affects several aspects of the behavior of quietlyswimming Daphnia pulex Swimming and sinking rates were measuredat 0.033 s intervals during the ‘hops’ characteristicof Daphnia swimming behavior Larger animals swim faster, covermore distance, and produce more powerful swimming strokes. LargerDaphnia also sink faster, but the sinking rate scales as lengthto the 0 58 power, far lower than the power of 2 00 predictedby Stokes Law considerations. The number of hops s1 wasindependent of body size, although a theoretical analysis predictshopping rate (antennal beat frequency) should increase as bodylength squared. Turning behavior, measured as the ratio of displacementto total distance, during 5 s, is also independent of body sizeIndependence of several parameters of body motion and body sizeimplies that factors other than simple mechanics affect Daphniaswimming behavior  相似文献   

7.
The nudibranch Melibe leonina swims by rhythmically bending from side to side at a frequency of 1 cycle every 2-4 s. The objective of this study was to locate putative swim motoneurons (pSMNs) that drive these lateral flexions and determine if swimming in this species is produced by a swim central pattern generator (sCPG). In the first set of experiments, intracellular recordings were obtained from pSMNs in semi-intact, swimming animals. About 10-14 pSMNs were identified on the dorsal surface of each pedal ganglion and 4-7 on the ventral side. In general, the pSMNs in a given pedal ganglion fired synchronously and caused the animal to flex in that direction, whereas the pSMNs in the opposite pedal ganglion fired in anti-phase. When swimming stopped, so did rhythmic pSMN bursting; when swimming commenced, pSMNs resumed bursting. In the second series of experiments, intracellular recordings were obtained from pSMNs in isolated brains that spontaneously expressed the swim motor program. The pattern of activity recorded from pSMNs in isolated brains was very similar to the bursting pattern obtained from the same pSMNs in semi-intact animals, indicating that the sCPG can produce the swim rhythm in the absence of sensory feedback. Exposing the brain to light or cutting the pedal-pedal connectives inhibited fictive swimming in the isolated brain. The pSMNs do not appear to participate in the sCPG. Rather, they received rhythmic excitatory and inhibitory synaptic input from interneurons that probably comprise the sCPG circuit.  相似文献   

8.
Expression of swimming in the medicinal leech (Hirudo medicinalis) is modulated by serotonin, a naturally occurring neurohormone. Exogenous application of serotonin engenders spontaneous swimming activity in nerve-cord preparations. We examined whether this activity is due to enhanced participation of swim motor neurons (MNs) in generating the swimming rhythm. We found that depolarizing current injections into MNs during fictive swimming are more effective in shifting cycle phase in nerve cords following serotonin exposure. In such preparations, the dynamics of membrane potential excursions following current injection into neuronal somata are substantially altered. We observed: 1) a delayed outward rectification (relaxation) during depolarizing current injection, most marked in inhibitory MNs; and 2) in excitor MNs, an enhancement of postinhibitory rebound (PIR) and afterhyperpolarizing potentials (AHPs) following hyperpolarizing and depolarizing current pulses, respectively. In contrast, we found little alteration in MN properties in leech nerve cords depleted of amines. We propose that enhanced expression of swimming activity in leeches exposed to elevated serotonin is due, partly, to enhancement of relaxation, PIR and AHP in MNs. We believe that as a consequence of alterations in cellular properties and synaptic interactions (subsequent paper) by serotonin, MNs are reconfigured to more effectively participate in generating and expressing the leech swimming rhythm.Abbreviations AHP Afterhyperpolarizing potential - DCC Discontinuous current clamp - DE Dorsal excitor motor neuron - DI Dorsal inhibitor motor neuron - IPSP Inhibitory postsynaptic potential - MN Motor neuron - PIR Postinhibitory rebound - VE Ventral excitor motor neuron - VI Ventral inhibitor motor neuron  相似文献   

9.
The effects of serotonin on the electrical properties of swim-gating neurons (cell 204) were examined in leech (Hirudo medicinalis) nerve cords. Exposure to serotonin decreased the threshold current required to elicit swim episodes by prolonged depolarization of an individual cell 204 in isolated nerve cords. This effect was correlated with a more rapid depolarization and an increased impulse frequency of cell 204 in the first second of stimulation. In normal leech saline, brief depolarizing current pulses (1 s) injected into cell 204 failed to elicit swim episodes. Following exposure to serotonin, however, identical pulses consistently evoked swim episodes. Thus, serotonin appears to transform cell 204 from a gating to a trigger cell.Serotonin had little effect on the steady-state currentvoltage relation of cell 204. However, serotonin altered the membrane potential trajectories in response to injected current pulses and increased the amplitude of rebound responses occurring at the offset of current pulses. These changes suggest that serotonin modulates one or more voltage dependent conductances in cell 204, resulting in a more rapid depolarization and greater firing rate in response to injected currents. Thus, modulation of intrinsic ionic conductances in cell 204 may account in part for the increased probability of swimming behavior induced by serotonin in intact leeches.Abbreviations AHP afterhyperpolarizing potential - DCC discontinuous current clamp - DP dorsal posterior nerve - G2 segmental ganglion 2 - PIR postinhibitory rebound - RMP resting membrane potential  相似文献   

10.
11.
Daphnia swimming behavior during vertical migration   总被引:2,自引:0,他引:2  
We observed the individual swimming behavior of a clone of Daphniahyalina swiniming freely inside a mesocosm-scale plankton tower.Changes in light intensity and the presence or absence of fishsmell induced vertical migration through  相似文献   

12.
Ryan  Shanna M.  Dodson  Stanley I. 《Hydrobiologia》1998,384(1-3):111-118
Our study documents individual swimming behavior of Daphnia pulicaria over a yearly cycle in a temperate lake. We collected D. pulicaria, a common freshwater zooplankton, from Lake Mendota on 10 dates between July 1994 and June 1995 from two depths, 2 m and 10 m. The Daphnia were rushed to the laboratory and video-taped as they swam in lake water under lake-ambient temperature and light conditions. Five-second swimming tracks of individual Daphnia were filmed and digitized using a motion analysis system. We measured average turning angle, swimming speed and sinking rate for each track. D. pulicaria swimming behavior varied over the annual cycle. We found significant differences in turning angle between depths and among months. Sinking rate and swimming speed were significantly different among months but not depths. Sinking rate and swimming speed were not significantly correlated with water temperature. Our results were contrary to Stokes' Law predictions, in that D. pulicaria had the slowest sinking speed in June, not in the winter when water temperatures were lowest and viscosity was highest. Body length was significantly correlated with all three swimming variables. We also studied swimming behavior in clonal populations of D. pulicaria in different concentrations of the alga, Chlamydomonas reinhardtii. D. pulicaria did not change swimming speed, turning angle or sinking rate over a range of food concentrations. Finally, swimming behavior in a D. pulicaria clone, tested at two temperatures in the laboratory, confirmed the results from our seasonal study; Daphnia did not sink as predicted by changes in viscosity.  相似文献   

13.
The swimming and feeding behavior of Mesocyclops   总被引:1,自引:1,他引:0  
The swimming and feeding behaviors of Mesocyclops are described from a review of the literature and personal observations. Mesocyclops exhibits considerable behavioral flexibility in response to environmental stimuli. Mesocyclops edax exhibits an increase in horizontal looping behavior at high prey densities, and performs a tight vertical looping behavior in response to the loss of captured prey. Ingestion rates by Mesocyclops are a complex function of prey density, morphology, and behavior in addition to prey size. Vertebrate predators induce a rapid escape response in Mesocyclops and may be responsible at least in part for their extensive diel vertical migrations. The complex behavioral patterns of Mesocyclops suggest that its distribution and abundance in nature will be distinctly nonrandom and influenced as much by its own behavioral responses as by other external physical factors such as water circulation patterns.  相似文献   

14.
Unusual swimming behavior of a magnetotactic bacterium   总被引:1,自引:0,他引:1  
Magnetotactic bacteria of strain Mar 1–83, when swimming in an applied magnetic field, did not move as a homogeneous cell suspension, but aggregated in distinct wave-like structures. The waves remained stable during forward movement. The number of cells per wave ranged from a few cells in permanent lateral contact to hundreds of bacteria moving visibly within a wave. Wave formation required a horizontal and vertical magnetic component. Electron microscopy indicated at least 3 distinct parallel chains of magnetosomes inside the bacterium. The cellular magnetic dipole moment was determined. Cell-to-cell magnetic interaction could be ruled out as the sole mechanism that induced wave formation and kept waves stable. Other mechanisms are discussed.  相似文献   

15.
High‐speed videography and inverted light microscope observations of cultures of several Pyramimonas Schmarda species (Pyramimonas chlorina Sym et Pienaar, Pyramimonas disomata McFadden Hill et Wetherbee, Pyramimonas gelidicola McFadden Wether‐bee et Moestrup, Pyramimonas mantoniae Moestrup et Hill, Pyramimonas melkonianii Sym et Pienaar, Pyramimonas mitra Moestrup et Hill, Pyramimonas moestrupii McFadden, Pyramimonas mucifera Sym et Pienaar, Pyramimonas nephroidea McFadden, Pyramimonas orientalis McFadden Hill et Wetherbee, Pyramimonas parkeae Norris et Pearson, Pyramimonas propulsa Moestrup et Hill) revealed swimming behavior to be much more diverse than originally reported for the genus. This diversity shows gradation between extremes of recurved flagellar beating and non‐biphasic ciliary beating. Comparison with the behavior of presumably more primitive members of the Pyramimonadales (Cymbomonas tetramitformis Schiller and Pterosperma cristatum Schiller) leads to the conclusion that the former condition is primitive and the gradation may assist in reconstructing phylogenetic relationships within the genus Pyramimonas, particularly as it is consistent with phylogenies derived from ultrastructural and molecular data.  相似文献   

16.
Real-time kinetics of gene activity in individual bacteria   总被引:22,自引:0,他引:22  
Golding I  Paulsson J  Zawilski SM  Cox EC 《Cell》2005,123(6):1025-1036
  相似文献   

17.
Growth of the ruminal bacteria Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, and R. albus 7 followed Monod kinetics with respect to concentrations of individual pure cellodextrins (cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose). Under the conditions tested, R. flavefaciens FD-1 possesses the greatest capacity to compete for low concentrations of these cellodextrins.  相似文献   

18.
1. Electrical correlates of behavioral activity were observed in the lip and tentacles of the polyp, but none were detected during column contraction. The tentacles are the most electrically active tissue, and the potentials are conducted along the length of the tentacle, but conduction to other parts of the animal were not observed. 2. Although the tentacles of the polyp and the rhopalia of the medusa are probably homologous, the development of pacemaker activity during strobilation is not a smooth transition from tentacle contraction potentials (TCPs) to marginal ganglion potentials (MGPs). This result indicates that each pacemaker activity develops de novo. 3. Two types of behavior were observed in the polyp: local responses, and coordinated activity which involved integrated responses in several body parts. The coordinated responses indicate that neurological coordination can take place in the polyp. Furthermore, feeding and spasm in the ephyra are similar to feeding and the protective response in the polyp. This similarity suggests that both coordinated responses in the polyp are coordinated by interneural facilitation in the diffuse nerve net (DNN) as in the ephyra. 4. Swimming in the ephyra is a medusoid behavior but feeding and spasm are coordinated by the DNN and are polypoid responses. Therefore, the ephyra is a mixture of polypoid and medusoid behaviors. As the ephyra matures into an adult medusa both polypoid responses are lost, but the DNN remains to modulate pacemaker output and control marginal tentacle contractions. As development proceeds from polyp, to ephyra, to medusa, each subsequent stage acquires some new behavior while retaining some aspect from the previous stage.  相似文献   

19.
The swimming behavior of the copepod Metridia pacifica was studied.Animals exposed to algae showed lower average swimming speedand fewer high-speed bursts. Animals exposed to Artemia naupliialone exhibited no change in swimming behavior.  相似文献   

20.
S ly , L.I. & H argreaves , M.H. 1984. Two unusual budding bacteria isolated from a swimming pool. Journal of Applied Bacteriology 56 , 479–486.
Two unusual strains of budding bacteria were isolated on a Millipore Pseudomonas Count Water Tester during routine monitoring of Pseudomonas aeruginosa counts in a swimming pool. The first isolate has been identified as Blastobacter sp. It was a yellow-pigmented, Gram negative rod-shaped organism with a polar holdfast by which it attached to solid surfaces or other cells to form rosettes. The cells reproduced by asymmetric division or budding at the free pole of the cell, producing motile daughter cells with a single polar flagellum. The second isolate, which has not yet been identified, was a red-pigmented, Gram negative rod-shaped organism which produced one or more buds at each pole of the cell. Cell division appears to occur by both binary fission and by budding. Both organisms were strict aerobes, catalase and oxidase positive and did not produce acid from glucose in Hugh and Leifson medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号