首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LPS is known to be a potent activator of macrophages and induces the production of TNF-alpha and IL-1. However, the signaling events and regulatory mechanisms required for the activation of macrophages by LPS have not been resolved precisely. We show that LPS modulates its own response in macrophages. Proteose peptone-induced murine peritoneal macrophages (P-PEM) produce significant amount of TNF-alpha and IL-1 after stimulation with LPS. However, preexposure of macrophages to low doses (less than 1 ng/ml) of LPS renders them refractory to stimulation by a second round of LPS, as evaluated by production of TNF-alpha. The loss of sensitivity to a second round of LPS was selective for TNF-alpha production as the LPS-primed macrophages retained the ability to produce IL-1. Northern blot analysis was performed with total RNA obtained from control and LPS- (1 ng/ml) primed P-PEM after 3-h stimulation with a second round of LPS. The expression of TNF-alpha mRNA was inhibited in LPS-primed P-PEM, whereas the expression of IL-1 beta mRNA was the same in control and LPS-primed P-PEM, consistent with the data of biologic activities of these two cytokines. Zymosan-induced TNF-alpha production was the same in control and LPS-primed macrophages, indicating that not all of the pathways required for TNF-alpha production were affected by LPS priming. Monokines such as human (h) rIL-1 alpha, hrTNF-alpha, hrIL-6, and murine rIFN-beta could not substitute for the action of low doses of LPS, and addition of indomethacin could not restore TNF-alpha production. These results suggest that exposure of macrophages to low doses of LPS suppresses the production of TNF-alpha, but not of IL-1, by inhibiting the expression of mRNA through a noncyclooxygenase-dependent mechanism. Thus, LPS-induced production of TNF-alpha and IL-1 in macrophages are differently regulated.  相似文献   

2.
J N Wood  P R Coote  J Rhodes 《FEBS letters》1984,174(1):143-146
We have investigated the action of hydrocortisosone on arachidonic acid mobilisation in cultures of mouse peritoneal macrophages, mouse L929 cells and the mouse macrophage-like cell line RAW264. Hydrocortisone inhibits both arachidonic acid release and prostaglandin production by L929 cells. However, prostaglandin production by macrophages or RAW264 cells is inhibited with a concomitant stimulation rather than inhibition of arachidonic acid release. These data suggest that hydrocortisone acts at the level of phospholipase activity in fibroblasts but at a later stage of prostanoid production in macrophages.  相似文献   

3.
Mycophenolic acid (MPA), the active metabolite of the immunosuppressive drug mycophenolate mofetil, is a selective inhibitor of inosine 5'-monophosphate dehydrogenase type II, a de novo purine nucleotide synthesis enzyme expressed in T and B lymphocytes and up-regulated upon cell activation. In this study, we report that the blockade of guanosine nucleotide synthesis by MPA inhibits mitogen-induced proliferation of PBL, an effect fully reversed by addition of guanosine and shared with mizoribine, another inhibitor of inosine 5'-monophosphate dehydrogenase. Because MPA does not inhibit early TCR-mediated activation events, such as CD25 expression and IL-2 synthesis, we investigated how it interferes with cytokine-dependent proliferation and survival. In activated lymphoblasts that are dependent on IL-2 or IL-15 for their proliferation, MPA does not impair signaling events such as of the extracellular signal-regulated kinase 2 and Stat5 phosphorylation, but inhibits down-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Therefore, in activated lymphoblasts, MPA specifically interferes with cytokine-dependent signals that control cell cycle and blocks activated T cells in the mid-G(1) phase of the cell cycle. Although it blocks IL-2-mediated proliferation, MPA does not inhibit cell survival and Bcl-x(L) up-regulation by IL-2 or other cytokines whose receptors share the common gamma-chain (CD132). Finally, MPA does not interfere with IL-2-dependent acquisition of susceptibility to CD95-mediated apoptosis and degradation of cellular FLIP. Therefore, MPA has unique functional properties not shared by other immunosuppressive drugs interfering with IL-2R signaling events such as rapamycin and CD25 mAbs.  相似文献   

4.
There is growing evidence to suggest a regulatory role of IL-4 in the immune system affecting both proliferation and lymphokine production. In the present work we have analyzed the effect of IL-4 on IL-2 and IFN-gamma synthesis by stimulating CD4+ human T cells (+10% accessory cells) with Con A in the presence of several doses (1 to 100 U/ml) of human rIL-4. The results showed an impaired IL-2 and IFN-gamma synthesis in the presence of IL-4. This inhibition was dose dependent and was evident only when IL-4 was added in the first 2 h of culture. Moreover, the external addition of IL-2 did not revert the inhibitory effect of IL-4 on IL-2 and IFN-gamma synthesis induced by Con A. We have also analyzed the effect of IL-4 on the expression of both alpha- and beta-chains of the IL-2R. Although the expression of IL-2R alpha mRNA was not modified after 6 h in culture in the presence of IL-4, a decrease was observed at 24 and 48 h. The addition of rIL-2 showed that the inhibition in IL-2R alpha expression could be explained by an impairment in the up-regulatory signal transmitted through the IL-2R. In addition to this, IL-4 did not modify the IL-2R beta mRNA expression at 6 and 24 h although a decreased expression was observed at 48 h which could be explained by the defective IL-2 production. The differential effect of IL-4 on the up-regulatory effect of IL-2 in the expression of IL-2R alpha and IL-2R beta suggest the existence of different regulatory mechanisms acting on the expression of both chains.  相似文献   

5.
Although lactic acid bacteria (LAB) affect the immune system, for example, having an anti-allergic effect, little is known about the actual mechanisms of immune modulation. Toll-like receptors (TLRs) recognize conserved microbial molecular patterns, and are presumed to be involved in the recognition of LAB. However, there are few detailed reports examining the relationships between TLR and LAB. We measured here production of IL-12, a cytokine considered to play an important role in anti-allergic effects, induced by Lactobacillus paracasei strain KW3110 and other typical LAB by cells from TLR2-, TLR4-, TLR9- and myeloid differentiation factor 88 (MyD88)-deficient mice. Unexpectedly, similar cytokine production from wild-type and TLR2-, 4- and 9-deficient mice was observed. In contrast, cells from MyD88-deficient mice failed to respond to stimulation with LAB. It is therefore concluded that although LAB, including strain KW3110, are not likely to be recognized by TLR2, 4 or 9, MyD88 is essential for the response to these bacteria.  相似文献   

6.
Stumpo R  Kauer M  Martin S  Kolb H 《Cytokine》2003,24(1-2):46-56
The hypothesis that IL-10, in addition to down-regulating pro-inflammatory activities of macrophages, induces an alternative state of macrophage reactivity was tested. We therefore conducted a systematic search for genes induced by IL-10 using the method of suppression subtractive hybridisation. Of an initial 1,300 candidate clones obtained, several screening rounds led to the identification of 51 clones which were reproducibly at least twofold up-regulated in mouse J774 macrophages in response to treatment with IL-10. Of these, 41 genes were homologous to known genes involved in cell metabolism or immunoregulation, five contained novel sequences and another five were homologous to ESTs without known function. One major finding was that about 25% of the IL-10 genes were also found expressed in response to IFNgamma, and several of these also reappeared in IL-4 or IL-5 induced mRNA species. Hence, Th1 and Th2 type cytokines may elicit a common basal activation response in macrophages. The second major finding was that 57% of IL-10 induced genes reappeared in IL-5 induced mRNA but no more than 18% were also found in IL-4 induced mRNA of J774 cells. We conclude that the gene expression response to IL-10 in macrophages is partially different from the response to IL-5 and is substantially different from the response to IL-4, which suggests an unexpected diversity of biological phenotypes induced by different Th2 type cytokines.  相似文献   

7.
The eotaxins are a family of CC chemokines that coordinate the recruitment of inflammatory cells, in particular eosinophils, to sites of allergic inflammation. The cDNA for eotaxin-2 (CC chemokine ligand 24) was originally isolated from an activated monocyte library. In this study, we show for the first time that peripheral blood monocytes generate bioactive eotaxin-2 protein constitutively. Eotaxin-2 production was significantly up-regulated when monocytes were stimulated with the proinflammatory cytokine IL-1beta and the microbial stimuli, LPS and zymosan. In contrast, the Th2 cytokines, IL-4 and IL-13, and the proinflammatory cytokine, TNF-alpha, acting alone or in combination, did not enhance the generation of eotaxin-2 by monocytes. Indeed, IL-4 suppressed the generation of eotaxin-2 by LPS-stimulated monocytes. Although other chemokines, including macrophage-inflammatory protein-1alpha, monocyte chemoattractant protein-1, macrophage-derived chemokine, and IL-8 were generated by monocytes, eotaxin-1 (CC chemokine ligand 11) could not be detected in the supernatants of monocytes cultured in the presence or absence of any of the stimuli used in the above experiments. Furthermore, human dermal fibroblasts that produce eotaxin-1 did not generate eotaxin-2 under basal conditions or when stimulated with specific factors, including IL-4, IL-13, TNF-alpha, and LPS. When monocytes were differentiated into macrophages, their constitutive generation of eotaxin-2 was suppressed. Moreover, IL-4, but not LPS, up-regulated the production of eotaxin-2 by macrophages. Taken as a whole, these results support a role for macrophage-derived eotaxin-2 in adaptive immunity, with a Th2 bias. In contrast, a role for monocyte-derived eotaxin-2 is implicated in innate immunity.  相似文献   

8.
TLR4 is the signaling but not the lipopolysaccharide uptake receptor   总被引:5,自引:0,他引:5  
TLR4 is the primary recognition molecule for inflammatory responses initiated by bacterial LPS (endotoxin). Internalization of endotoxin by various cell types is an important step for its removal and detoxification. Because of its role as an LPS-signaling receptor, TLR4 has been suggested to be involved in cellular LPS uptake as well. LPS uptake was investigated in primary monocytes and endothelial cells derived from TLR4 and CD14 knockout C57BL/6 mice using tritiated and fluorescein-labeled LPS. Intracellular LPS distribution was investigated by deconvolution confocal microscopy. We could not observe any difference in LPS uptake and intracellular LPS distribution in either monocytes or endothelial cells between TLR4(-/-) and wild-type cells. As expected, CD14(-/-) monocytes showed a highly impaired LPS uptake, confirming CD14-dependent uptake in monocytes. Upon longer incubation periods, the CD14-deficient monocytes mimicked the LPS uptake pattern of endothelial cells. Endothelial cell LPS uptake is slower than monocyte uptake, LBP rather than CD14 dependent, and sensitive to polyanionic polymers, which have been shown to block scavenger receptor-dependent uptake mechanisms. We conclude that TLR4 is not involved in cellular LPS uptake mechanisms. In membrane CD14-positive cells, LPS is predominantly taken up via CD14-mediated pathways, whereas in the CD14-negative endothelial cells, there is a role for scavenger receptor-dependent pathways.  相似文献   

9.
We have investigated the effects of IL-2 and IL-4 on different parameters of T cell activation using three T cell lines. The Th cell line L14 and the cytotoxic T cell line C30.1, both grown in IL-2-containing medium, and a line derived from C30.1 cells (line 1) cultured in IL-4 for a prolonged period were studied. All three cell lines could be activated with IL-2 or IL-4. T cell stimulation by either IL-2- or IL-4-induced identical patterns of cell size enlargement and transferrin receptor expression. However, only IL-2 up-regulated cell-surface expression of the p55 subunit of the IL-2R (p55 IL-2R) as measured by flow cytometry and RIA. This difference was also reflected by the accumulation of soluble p55 IL-2R in the culture medium. No significant increase in expression of membrane or soluble forms of p55 IL-2R was detected after IL-4 stimulation. mAb specific for p55 IL-2R which block IL-2-induced T cell growth did not affect IL-4-mediated T cell proliferation indicating that p55 IL-2R is not involved in IL-4-mediated T cell growth. Analysis of IL-4R expression performed on line 1 using biotinylated IL-4 revealed that IL-4, but not IL-2, is capable of increasing IL-4R expression. Together these results suggest that during IL-2- or IL-4-induced T cell proliferation, each lymphokine specifically up-regulates its own receptor.  相似文献   

10.
11.
We have investigated the potential use of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists as anti-inflammatory agents in cell-based assays and in a mouse model of endotoxemia. Human peripheral blood monocytes were treated with LPS or PMA and a variety of PPARgamma agonists. Although 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) at micromolar concentrations significantly inhibited the production of TNF-alpha and IL-6, four other high affinity PPARgamma ligands failed to affect cytokine production. Similar results were obtained when the monocytes were allowed to differentiate in culture into macrophages that expressed significantly higher levels of PPARgamma or when the murine macrophage cell line RAW 264.7 was used. Furthermore, saturating concentrations of a potent PPARgamma ligand not only failed to block cytokine production, but also were unable to block the inhibitory activity of 15d-PGJ2. Thus, activation of PPARgamma does not appear to inhibit the production of cytokines by either monocytes or macrophages, and the inhibitory effect observed with 15d-PGJ2 is most likely mediated by a PPARgamma-independent mechanism. To examine the anti-inflammatory activity of PPARgamma agonists in vivo, db/db mice were treated with a potent thiazolidinedione that lowered their elevated blood glucose and triglyceride levels as expected. When thiazolidinedione-treated mice were challenged with LPS, they displayed no suppression of cytokine production. Rather, their blood levels of TNF-alpha and IL-6 were elevated beyond the levels observed in control db/db mice challenged with LPS. Comparable results were obtained with the corresponding lean mice. Our data suggest that compounds capable of activating PPARgamma in leukocytes will not be useful for the treatment of acute inflammation.  相似文献   

12.
Human rIL-4 was studied for its capacity to induce lymphokine-activated killer (LAK) cell activity. In contrast to IL-2, IL-4 was not able to induce LAK cell activity in cell cultures derived from peripheral blood. IL-4 added simultaneously with IL-2 to such cultures suppressed IL-2-induced LAK cell activity measured against Daudi and the melanoma cell line MEWO in a dose-dependent way. IL-4 also inhibited the induction of LAK cell activity in CD2+, CD3-, CD4-, CD8- cells, suggesting that IL-4 acts directly on LAK precursor cells. IL-4 added 24 h after the addition of IL-2 failed to inhibit the generation of LAK cell activity. Cytotoxic activity of various types of NK cell clones was not affected after incubation in IL-4 for 3 days, indicating that IL-4 does not affect the activity of already committed killer cells. No significant differences were observed in the percentages of Tac+, NKH-1+ and CD16+ cells after culturing PBL in IL-2, IL-4 or combinations of IL-2 and IL-4 for 3 days. IL-4 also inhibited the activation of non-specific cytotoxic activity in MLC, as measured against K-562 and MEWO cells. In contrast, the Ag-specific CTL activity against the stimulator cells was augmented by IL-4. Collectively, these data indicate that IL-4 prevents the activation of LAK cell precursors by IL-2, but does not inhibit the generation of Ag-specific CTL.  相似文献   

13.
Niacin is a widely used lipid-regulating agent in dyslipidemic patients. Previously, we have shown that niacin inhibits triacylglycerol synthesis. In this report, using HepG2 cells, we have examined the effect of niacin on the mRNA expression and microsomal activity of diacylglycerol acyltransferase 1 and 2 (DGAT1 and DGAT2), the last committed but distinctly different enzymes for triglyceride synthesis. Addition of niacin to the DGAT assay reaction mixture dose-dependently (0-3 mM) inhibited DGAT activity by 35-50%, and the IC(50) was found to be 0.1 mM. Enzyme kinetic studies showed apparent K(m) values of 8.3 microM and 100 microM using [(14)C]oleoyl-CoA and sn-1,2-dioleoylglycerol as substrates, respectively. A decrease in apparent V(max) was observed with niacin, whereas the apparent K(m) remained constant. A Lineweaver-Burk plot of DGAT inhibition by niacin showed a noncompetitive type of inhibition. Niacin selectively inhibited DGAT2 but not DGAT1 activity. Niacin inhibited overt DGAT activity. Niacin had no effect on the expression of DGAT1 and DGAT2 mRNA. These data suggest that niacin directly and noncompetitively inhibits DGAT2 but not DGAT1, resulting in decreased triglyceride synthesis and hepatic atherogenic lipoprotein secretion, thus indicating a major target site for its mechanism of action.  相似文献   

14.
Intravenous immunoglobulin preparations have been successfully used in many disorders, where immunomodulation rather than immunoglobulin replacement has been the goal of therapy. The exact mechanisms by which immunoglobulin exerts its immunomodulatory effects are unclear. Proposed mechanisms include modification of T cell activation and alteration to cytokine production. As intravenous immunoglobulin therapy has been used in a number of disorders where superantigens are proposed to play a role in the disease pathogenesis, we have examined the effect of in vitro human pooled immunoglobulin on cytokine production from peripheral blood mononuclear cells in response to activation with the Staphylococcal superantigen Staphylococcal enterotoxin B. The authors found inhibition of secretion of interleukin 4 (IL-4) (P<0.001) but not interferon gamma (IFN-gamma) (P=0.13) or tumour necrosis factor alpha (TNF-alpha) (P=0.66) by pooled immunoglobulin at concentrations (6 g/l) which approximate the rise in serum immunoglobulin following in vivo IVIG therapy. Mononuclear cell proliferation was also inhibited by addition of pooled immunoglobulin to superantigen stimulated cultures. These effects do not relate to specific anti-staphylococcal enterotoxin B antibodies in the immunoglobulin preparation. The authors show that pooled human immunoglobulin can differentially modulate the secretion of IL-4 and IFN-gamma in response to superantigen stimulation.  相似文献   

15.
4-Bromophenacyl bromide at a concentration of 50 microM does not inhibit phospholipase A2 activity in liver macrophages. Rather, this compound increases the amount of radioactivity released from [3H]arachidonate-prelabeled Kupffer cells and leads to the formation of small amounts of thromboxane, prostaglandin D2 and prostaglandin E2. Also the zymosan-induced formation of thromboxane and prostaglandin E2 from endogenous sources which is thought to involve phospholipase A2 remains unaffected in the presence of this compound. The generation of superoxide and the formation of prostaglandin D2 from arachidonate and after stimulation of the cells with zymosan, however, are blocked by 4-bromophenacyl bromide. Furthermore, this compound suppresses the incorporation of externally added arachidonate into membrane lipids of the cells. 4-Bromophenacyl bromide seems, therefore, not to be a useful tool to demonstrate the involvement of phospholipase A2 in complex biological systems.  相似文献   

16.
The role of different subpopulations of bronchial macrophages (BMs) in asthma pathogenesis has not yet been completely elucidated. In addition, little is known about potential in vivo responsiveness of BMs to pro- and anti-inflam-matory cytokines present in the bronchial milieu. We aimed to characterize asthmatic patients' BM subpopulations delineated by common markers of macrophage/monocyte cells, CD16 and CD14, and subsequently to analyze cytokine receptor expression on those subsets. Subjects included eighteen patients with moderate asthma (six steroid-naive and twelve steroid-treated) and ten healthy control subjects. Flow cytometry was used to analyze phenotypical features of BMs including expression of receptors for IL-10, IL-4 and IL-7. Exhaled nitric oxide analysis and induced sputum eosinophil counts were used to assess airway inflammation. BMs from both steroid-naive and steroid-treated asthmatic patients showed significantly decreased expression of CD16, as compared to healthy subjects' BMs. CD16, but not CD14, expression inversely correlated with exhaled nitric oxide levels and sputum eosinophilia. Short-term administration of inhaled cortiocosteroids (ICS) in steroid-naive asthmatic patients led to significant reduction of CD16 expression and enhancement of CD14 expression. Next, we analyzed the expression of receptors for IL-10, IL-4 and IL-7 on the surface of BM subpopulations characterized by different levels of CD14 and CD16 expression. We observed substantial levels of IL-10R on the surface of BMs collected from asthmatic and healthy subjects. Interestingly, IL-10R was found mostly on those macrophages that co-expressed CD14. In contrast, independently on co-expression of CD14, the levels of IL-4R and IL-7R on BMs were low in both asthmatic and healthy subjects. The results suggest that different BM subsets may be differentially involved in regulating the inflammatory response in allergic asthma.  相似文献   

17.
Bacterial LPS and TNF induce vascular endothelial cells to express a variety of response molecules. LPS that is partially deacylated (dLPS) by a human neutrophil enzyme blocks the ability of LPS, but not TNF, to augment one of these responses, the expression of endothelial cell surface molecules that promote neutrophil adherence (J. Exp. Med. 1987; 165:1393-1402). We show that dLPS can inhibit the ability of LPS, but not TNF, to elicit the expression of plasminogen activator inhibitor-1 (PAI-1), prostacyclin, and PGE2 by human umbilical vein endothelial cells. dLPS also prevented the accumulation of specific PAI-1 mRNA in response to LPS, but not to TNF. Neither the LPS- or TNF-induced expression of PAI-1 nor the dLPS inhibition of the LPS response was mediated by prostanoids. These results indicate that dLPS can specifically block a variety of endothelial cell responses to LPS and provide support for the hypotheses 1) that dLPS and LPS may interact with a common target molecule on or in endothelial cells, and 2) that dLPS, produced by enzymatic deacylation of LPS in vivo, could inhibit endothelial cell stimulation by LPS and thereby limit the host inflammatory response to invasive gram-negative bacteria.  相似文献   

18.
A supernatant derived from the Th2 clone D10.G4.1 (D10 supernatant) stimulated high numbers of Ig-secreting cells when added to dextran-conjugated anti-delta-antibody (anti-delta-dextran)-activated B cells but stimulated only marginal Ag-specific responses when added to B cells cultured with TNP-Ficoll. When anti-IL-10 antibody was added to cultures containing D10 supernatant, IL-5, and TNP-Ficoll, there was a significant increase in the numbers of anti-TNP-antibody producing cells, suggesting that at least a part of the inhibitory activity of D10 supernatant is mediated by IL-10. Addition of rIL-10 inhibited both TNP-Ficoll- and anti-delta-dextran-mediated Ig secretion that was stimulated in the presence of IL-5 but had no suppressive effect on IL-2-stimulated responses, indicating that its inhibitory effect was selective for a specific mode of B cell activation. Addition of IL-10 did not, however, inhibit anti-delta-dextran-stimulated B cell proliferation. The IL-10-induced-inhibition of Ig secretion was not due to suppression of IFN-gamma production, because the addition of IFN-gamma did not reverse the inhibition, nor did the addition of anti-IFN-gamma mimic the IL-10-mediated inhibition. These data suggest that a composite of lymphokines secreted by Th cells may contain both inhibitory and stimulatory activities. Sorting out the conditions under which stimulation or inhibition is seen may reveal additional diversity in Ag-stimulated pathways of B cell activation.  相似文献   

19.
20.
Inflammation characterized by the expression and release of cytokines and chemokines is implicated in the development and progression of atherosclerosis. Oxidatively modified low density lipoproteins, central to the formation of atherosclerotic plaques, have been reported to signal through Toll-like receptors (TLRs), TLR4 and TLR2, in concert with scavenger receptors to regulate the inflammatory microenvironment in atherosclerosis. This study evaluates the role of low density lipoproteins (LDL) and oxidatively modified LDL (oxmLDL) in the expression and release of proinflammatory mediators IκBζ, IL-6, IL-1β, TNFα, and IL-8 in human monocytes and macrophages. Although standard LDL preparations induced IκBζ along with IL-6 and IL-8 production, this inflammatory effect was eliminated when LDL was isolated under endotoxin-restricted conditions. However, when added with TLR4 and TLR2 ligands, this low endotoxin preparation of oxmLDL suppressed the expression and release of IL-1β, IL-6, and TNFα but surprisingly spared IL-8 production. The suppressive effect of oxmLDL was specific to monocytes as it did not inhibit LPS-induced proinflammatory cytokines in human macrophages. Thus, TLR ligand contamination of LDL/oxmLDL preparations can complicate interpretations of inflammatory responses to these modified lipoproteins. In contrast to providing a proinflammatory function, oxmLDL suppresses the expression and release of selected proinflammatory mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号