首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radiometric assay for 5′-nucleotidese (EC 3.1.3.5) has been developed, which is applicable for all 5′-nucleotide substrates. Various column materials and eluants were evaluated for their suitability in the separation of purine and pyrimidine bases and nucleosides produced in the reaction. Neutral alumina columns were found to be the best. The unadsorbed nucleosides and their bases could be quantitatively eluted with 0.1 m Tris-HCl, pH 7.4; subsequent elution of the 5′-nucleotide was then accomplished with 0.2 m sodium phosphate, pH 7.4. Differential measurement of 5′-nucleotidase can be accomplished in the presence of acid or alkaline phosphatases by inclusion of concanavalin A into the reaction mixture. It completely inhibits 5′-nucleotidase without effecting the phosphatases. The applicability of this assay has been demonstrated by studying the properties of 5′-nucleotidase present in a purified plasma membrane preparation from a rat tumor which is enriched with both 5′-nucleotidase and alkaline phosphatase.  相似文献   

2.
Our laboratories analyze the synthetic reactions leading from formamide, NH2COH to prebiotically relevant compounds in the presence of catalysts. We have described the formation of all the biological nucleic bases of carboxylic acids of two aminoacids, and of condensing agents in the presence of catalysts of terrestrial origin (Saladino et al., 2012) and of one meteorite. Heat-dependent synthetic reactions from NH2COH lead to the synthesis of acyclonucleosides, not (yet?) to that of nucleosides [hurdle # 1]. Nucleosides are phosphorylated in the presence of NH2COH and a phosphate source yielding cyclic nucleotides as well. (Costanzo et al., 2007). 3′,5′-cyclic GMP nonenzymatically polymerizes up to at least 25mers, as shown by PAGE, MALDI ToF, 31P-NMR, specific RNAse and inhibitors analyses (Costanzo et al., 2012).The reaction is stimulated by 1,8-diazabicycloundec-7-ene and dimethylformamide. 3′,5′-cUMP does not polymerize spontaneously [hurdle # 2], 3′,5′-cAMP polymerizes very poorly [hurdle # 3]. We will discuss data on the polymerization of 3′,5′-cCMP and on a ribozyme activity exerted by oligomers neosynthesized from cyclic nucleotides. This approach finds its larger perspective in the evolutionary scenario depicted by Trifonov (2009).  相似文献   

3.

Since the discovery of 3′-azido-3′-deoxythymidine (AZT) and 2′,3′-didehydro-2′,3′-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2′,3′-didehydro-2′,3′-dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T. The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

4.
Abstract

The synthesis of a series of aryl bis(nucleosid-5′-yl)phosphates in which the nucleosides are either 2′,3′-dideoxy-(d2-) or 2′,3′-didehydro-2′,3′-dideoxy-(d4-) nucleosides is described. These were tested for anti-HIV activity and their efficacy and toxicity compared with the parent nucleosides. Only the 4-(methylsulphonyl)phenyl derivatives of d4T and d2A had any significant activity and had selectivity indices of the same order as the parent nucleosides. These findings can be explained by uptake of the triesters into cells followed by a slow release of nucleoside and nucleotide. In the case of some compounds (such as d2T and d2U) the 5′-monophosphate of which is known to inhibit thymidylate kinase, it is possible that the levels of nucleotide liberated are such that they are not processed into the 5′-triphosphate and hence no antiviral effect is seen.  相似文献   

5.
Syntheses and antiviral activity of new carbocyclic analogs of 2′, 3′-dideoxysangivamycin, 2′,3′-dideoxytoyocamycin and 2′,3′-dideoxytriciribine is described. The key intermediate, carbocyclic 4-chloro- 5-iodopyrrolopyrimidine, was synthesized in good yield via a novel iodination method using I2 and CF3COOAg. This carbocyclic 4-chloro-5-iodopyrrolopyrimidine then allowed for a concise synthesis of the desired 4,5-disubstituted carbocyclic nucleosides.  相似文献   

6.
Abstract

2′-Deoxy-2′-fluoro-D-arabinopyranosyl nucleosides were synthesized by condensation of 1,3,4-tri-O-benzoyl-2-deoxy-2-fluoro-D-arabinopyranose with the appropriate silylated bases in the presence of trimethylsilyl triflate. Scission of the 3′,4′-bond by periodate oxidation followed by sodium borohydride reduction resulted in the formation of the 3′,4′-seco analogues of the 2′-deoxy-2′-fluoro-D-arabinofuranosyl nucleosides.  相似文献   

7.
The cytokinin activities of adenosine 3′,5′-monophosphate, N6,O2″-dibutyryladenosine 3′,5−'monophosphate, 8-bromoadenosine 3′,5′-monophosphate, N6-(Δ2-isopentenyl)adenosine 3′,5′-monophosphate, and N6-benzyladenosine 3′,5′-monophosphate were determined in the tobacco bioassay and compared with the activities of the corresponding non-cyclic nucleotides, nucleosides and bases of the N6-isopentenyl-substituted, N6-benzyl-substituted, 8-bromo-substituted, and unsubstituted adenine series. In each of these series the cytokinin activities in decreasing order were: bases ⪢ nucleosides ⪖ nucleotides > cyclic nucleotides. All members of the N6-isopentenyl- substituted and N6-benzyl-substituted series were highly active cytokinins, reaching maximum activity at concentrations of 1 μM or less, whereas, as expected, all members of the unmodified adenine series were inactive in the tested concentration ranges of up to 180 and 200 μM for adenosine and adenine, and 40 μM for the adenine nucleotides. Members of the 8-bromo-substituted adenine series were much weaker cytokinins than the N6-substituted adenine derivatives but showed activity in the same sequence starting at a concentration of about 5 μM. Thus, in the cases of 8-bromoadenosine 3′,5′-monophosphate and N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate, both of which have been reported to promote cell division and growth of plant tissues, the cytokinin activity is related to the 8-bromo substituent and to the N6-butyryl substituent, respectively, rather than to the 3′,5′-cyclic monophosphate moiety.  相似文献   

8.
Abstract

New methods for the synthesis of 2′,3′-didehydro-2′,3′-dideoxy-2′ (and 3′)-methyl-5-methyluridines and 2′,3′-dideoxy-2′ (and 3′)-methylidene pyrimidine nucleosides have been developed from the corresponding 2′ (and 3′)-deoxy-2′ (and 3′)-methylidene pyrimidine nucleosides. Treatment of a 3′-deoxy-3′-methylidene-5-methyluridine derivative 8 with 1,1′-thiocarbonyldiimidazole gave the allylic rearranged 2′,3′-didehydro-2′,3′-dideoxy-3′-[(imidazol-1-yl)carbonylthiomethyl] derivative 24. On the other hand, reaction of 8 with methyloxalyl chloride afforded 2′-O-methyloxalyl ester 25. Radical deoxygenation of both 24 and 25 gave 26 exclusively. Palladium-catalyzed reduction of 2′,5′-di-O-acetyl-3′-deoxy-3′-methylidene-5-methyluridine (32) with triethylammonium formate as a hydride donor regioselectively afforded the 2′,3′-dideoxy-3′-methylidene derivative 35 and 2′,3′-didehydro-2′,3′-dideoxy-3′-methyl derivative 34 in a ratio of 95:5 in 78% yield. These reactions were used on the corresponding 2′-deoxy-2′-methylidene derivatives. An alternative synthesis of 2′,3′-dideoxy-2′-methylidene pyrimidine nucleosides (43, 52, and 54) was achieved from the corresponding 1-(3-deoxy-β-D-thero-pentofuranosyl)pyrimidines (44 and 45). The cytotoxicity against L1210 and KB cells and inhibitory activity of the pathogenicity of HIV-1 are also described  相似文献   

9.
A direct and continuous assay for cyclic 3′,5′-nucleotide phosphodiesterase has been developed. This method is based on the fact that the phosphate group of adenosine 3′,5′-phosphate has one titratable species whereas that of 5′-adenosine monophosphate has two. Hydrolysis of cyclic AMP to 5′-AMP by phosphodiesterase is accompanied by a stoichiometric generation of protons. The rate of addition of an alkaline solution to the reaction mixture to maintain a constant pH with a pH stat is thus stoichiometrically related to the rate of cyclic AMP hydrolysis. A reaction producing 10 mμmoles of H+ or more per minute in 1.5 ml of reaction mixture is accurately measured by this technique. Duplicates are usually within 5% of each other. Results obtained by the titrimetric method correlate well with those obtained by conventional methods. This technique has been successfully used to assay phosphodiesterase of bovine brain in the purified as well as the crude stage.  相似文献   

10.
The furanose and the phosphate rings of cyclic 3′,5′-nucleotides are locked in the 4T3 and chair conformations respectively. The only variable which shows major conformational flexibility in these molecules is the rotation about the glycosyl bond which describes the orientation of the base relative to the sugar-phosphate bicyclic system. The glycosyl torsion angle has been analyzed for cyclic nucleotides with different purine and pyrimidine bases by use of conformational energy calculations. The results indicate that all the pyrimidine bases, U, T and C show a very strong energetic preference for the anti range of conformations. The calculations predict that among cyclic 3′,5′-purine nucleotides cyclic GMP and cyclic IMP favor the syn conformation to the anti by 95:5 and 70:30 respectively, while cyclic AMP shows a preference for the anti conformation to syn by 70:30. Thus the purines show a greater probability for the syn conformation than the pyrimidines in cyclic 3′,5′-nucleotides.  相似文献   

11.
Abstract

Acetylsalicylic acid (aspirin) reacted with adenosine, cytidine, guanosine and their 2′-deoxynucleosides to give acetylated nucleosides. Cytidine and 2′-deoxycytidine gave N4-acetylated nucleosides in nitromethane while in pyridine fully acetylated products were obtained. Adenosine and 2′-deoxyadenosine also gave fully acetylated products. However, guanosine and 2′-deoxyguanosine gave 2′,3′,5′-tri-O-acetylribosyl and 3′,5′-di-O-acetyl-2′-deoxyribosyl nucleosides, respectively. The corresponding aglycons also gave acetylated heterocycles under various conditions.  相似文献   

12.
As antiviral nucleosides containing a fluorine atom at 2′-position are endowed with increased stabilization of glycosyl bond, it was of interest to investigate the influence of three fluorine atoms at 2′- and 5′-positions of apiosyl nucleoside phosphonate analogues. Various pyrimidine and purine 2′,5′,5′-trifluoro-3′-hydroxy-apiose nucleoside phosphonic acid analogues were synthesized from 1,3-dihydroxyacetone. Electrophilic fluorination of lactone was performed using N-fluorodibenzenesulfonimide. Difluorophosphonation was performed by direct displacement of triflate intermediate with diethyl(lithiodifluoromethyl) phosphonate to give the corresponding (α,α-difluoroalkyl) phosphonate. Condensation successfully proceeded from a glycosyl donor with persilylated bases to yield nucleoside phosphonate analogues. Deprotection of diethyl phosphonates provided the final phosphonic acid sodium salts. The synthesized nucleoside analogues were subjected to antiviral screening against various viruses.  相似文献   

13.
A novel route for the synthesis of 2′,3′-difluorinated 5′-deoxythreosyl phosphonic acid nucleosides from glyceraldehyde using the Horner-Emmons reaction in the presence of triethyl α-fluorophosphonoacetate is described. The second fluorination at the 2′-position was an electrophilic reaction performed using N-fluorodibenzenesulfonimide. Glycosylation reactions between the nucleosidic bases and glycosyl donor 9 generated nucleosides that were further phosphonated and hydrolyzed to produce the desired nucleoside analogues. The synthesized nucleoside analogues 13, 16, 20, and 23 were tested for anti- human immunodeficiency virus (HIV) activity as well as cytotoxicity. Adenine derivative 16 showed significant anti-HIV activity up to 100 μM.  相似文献   

14.
The use of the Varian Aerograph LCS-1000 is extended to the determination of mononucleotides and mononucleoside 3′,5′-diphosphates on the nanomole level. In combination with the previously described method for the determination of nucleosides the new method allows identification of both termini in an oligonucleotide of any length. Only one enzyme is used to degrade the oligonucleotide, venom exonuclease for a 3′-oligonucleotide or micrococcal nuclease for a 5′-oligonucleotide. The same method also allows the elucidation of the sequence of a trinucleotide, and the determination of chain length of oligonucleotide.  相似文献   

15.
Abstract

The synthesis of some enantiomerically pure carbocyclic 2′,3′-dideoxy-3′-C-hydroxymethyl derivatives of adenine, inosine and guanine is described. The Mitsunobu reaction was used in the coupling procedure giving exclusively N9-coupling. The nucleosides were tested for inhibition of HIV multiplication in vitro and were found to be inactive in the assay.  相似文献   

16.
A simple and effective separation of cyclic adenosine-3′,5′-monophosphate (cAMP) and its butyryl-substituted analogues using partition chromatography on columns of Sephadex gel in isopropanol/0.5 m ammonium acetate (4:1) is described. The technique is suitable for preparative separations as demonstrated by revised uv spectral data obtained on butyrylated cAMP's purified by this technique. In addition, it has analytical utility in that it allows complete separation of N6-monobutyryl cAMP from O2′-monobutyryl cAMP, thereby permitting simultaneous and independent assessment of the rate of acyl substituent hydrolysis from the disubstituted derivative (N6,O2′-dibutyryl cAMP), and this is demonstrated under several conditions.  相似文献   

17.
Abstract— A potentiometric titration method for the assay of 2′,3′-cyclic nucleotide 3′-phosphohydrolase is presented. Progress curves of the reaction were recorded automatically by pH-stat. 2-Mercaptoethanol was added to the reaction mixture to maintain a linear rate of reaction. The method is suitable for obtaining kinetic parameters and can be used for the rapid assay of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in nervous tissues. An improved colorimetric method for estimation of 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity at the optimum pH is described. This method employs the two-step procedure in which decyclization by 2′,3′-cyclic nucleotide 3′-phosphohydrolase and dephosphorylation by Escherichia coli alkaline phosphatase (EC 3.1.3.1) are carried out separately under the optimum conditions for each enzyme. The method is sensitive and most convenient for routine assays.  相似文献   

18.
Abstract

We have synthesized polycyclic nucleoside derivatives by a novel, one pot procedure by reacting 4-0-TPS-pyrimidine nucleosides with aromatic diamines. The reaction is limited in scope but provides easy access to certain previously unknown heterocyclic ring systems.2 4-0-Triisopro- pylphenylsulfonyl-pyrimidine nucleosides were reacted with aromatic diamines leading to fused, polycyclic ring systems: o-phenylenediamine yielded the pyrimido[1,6-a]benzimidazole, 2.3- diaminonaphthalene gave the naphth[2′,3′:4,5]imidam [1.2-flpyrimidine and 1.8-diaminonaph- thalene led to the pyrimido[l,6-a]perimidine ring system. The reaction is unique because two connected nucleophilic centers react with the pyrimidine nucleoside to form an extended ring system. However, reactions of pyrimidine nucleosides with electrophiles are well known. E.g., reaction of cytidine and adenosine with bromoacetaldehyde yields ethenocytidine and ethenoadenosine) and on reaction of cytidine with 1′-methylthiaminium salts dipyrimido[1,6-a:4′,5′-d]pyrimidine derivatives are obtained.4 Other polycyclic bases have been made from cytidine and adenosine by photochemical reactions5.  相似文献   

19.
Abstract

Application of previously described methodologies, for the synthesis of 2′,3′-dideoxy-2′,3′-didehydro nucleosides from the parent ribonucleosides, to the antibiotics tubercidin (1), toyocamycin (6) and sangivamycin (10) has provided the corresponding 2′,3′-unsaturated nucleosides 4, 9, and 13. A reduction of the 2′,3′-unsaturated moiety has afforded the 2′,3′-dideoxynucleoside antibiotics 5, 14, and 15.  相似文献   

20.
A general method is described for synthesizing 3′,5′-dithio-2′-deoxypyrimidine nucleosides 6 and 13 from normal 2′-deoxynucleosides. 2,3′-Anhydronucleosides 2 and 9 are applied as intermediates in the process to reverse the conformation of 3′-position on sugar rings. The intramolecular rings of 2,3′-anhydrothymidine and uridine are opened by thioacetic acid directly to produce 3′-S-acetyl-3′-thio-2′-deoxynucleosides 3 or 5. To cytidine, OH? ion exchange resin was used to open the ring and 2′-deoxycytidine 10 was abtained in which 3′-OH group is in threo-conformation. The 3′-OH is activated by MsCl, and then substituted by potassium thioacetate to form the S,S′-diacetyl-3′,5′-dithio-2′-deoxycytidine 12. The acetyl groups in 3′,5′ position are removed rapidly by EtSNa in EtSH solution to afford the target molecules 6 and 13. The differences of synthetic routes between uridine and cytidine are also discusssed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号