首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.  相似文献   

2.
Aim To compare patterns and drivers of freshwater fish introductions across five climatically similar regions and evaluate similarities and differences in the non‐native species introduced. Location Five mediterranean‐climate regions: California (USA), central Chile, south‐western Australia, the Iberian peninsula (Spain and Portugal) and the south‐western Cape (South Africa). Methods Species presence–absence for native and non‐native fishes were collated across the regions, and patterns of faunal change were examined using univariate and multivariate statistical approaches. Taxonomic patterns in freshwater fish introductions were evaluated by comparing the number of species introduced by order to the numbers expected from binomial probabilities. Factors influencing multiple introductions of freshwater fish species in mediterranean regions were determined using generalized linear modelling. Results High levels of endemism (70–90%) were revealed for south‐western Cape, south‐western Australia and Chile. Despite their high rates of endemism, all regions currently have more non‐native species than endemic species. Taxonomic selection was found for five orders, although this was only significant for Salmoniformes across regions. The average increase in regional compositional similarity of fish faunas resulting from non‐native fish introductions was 8.0%. Important factors predicting multiple introductions of a species include previous introduction success and mean latitude of its distribution Main conclusions The mediterranean‐climate regions of the world, separated by vast distances, originally had a few fish species in common but are now more similar, owing to species introductions, illustrating the extent and importance of taxonomic homogenization. Introductions are largely driven by taxonomically biased human interests in recreational fisheries, aquaculture and ornamental pet species.  相似文献   

3.
According to the global latitudinal diversity gradient, a decrease in animal and plant species richness exists from the tropics towards higher latitudes. The aim of this study was to describe the latitudinal distribution patterns of Chilean continental flora and delineate biogeographic regions along a 4270‐km north–south gradient. We reviewed plant lists for each of the 39 parallels of continental Chile to build a database of the geographical distribution of vascular plant species comprising 184 families, 957 genera and 3787 species, which corresponded to 100%, 94.9% and 74.2% of the richness previously defined for Chile, respectively. Using this latitudinal presence–absence species matrix, we identified areas with high plant richness and endemism and performed a Cluster analysis using Jaccard index to delineate biogeographic regions. This study found that richness at family, genus and species levels follow a unimodal 4270‐km latitudinal distribution curve, with a concentration of richness in central Chile (31–42°S). The 37th parallel south (central Chile) presented the highest richness for all taxonomic levels and in specific zones the endemism (22–37°S) was especially high. This unimodal pattern contrasts the global latitudinal diversity gradient shown by other studies in the Northern hemisphere. Seven floristic regions were identified in this latitudinal gradient: tropical (18–22°S), north Mediterranean (23–28°S), central Mediterranean (29–32°S), south Mediterranean (33–37°S), north temperate (38–42°S), south temperate (43–52°S) and Austral (53–56°S). This regionalization coincides with previous bioclimatic classifications and illustrates the high heterogeneity of the biodiversity in Chile and the need for a reconsideration of governmental conservation strategies to protect this diversity throughout Chile.  相似文献   

4.
5.
Aim The genus Kniphofia contains 71 species with an African–Malagasy distribution, including one species from Yemen. The genus has a general Afromontane distribution. Here we explore whether Kniphofia is a floristic indicator of the Afromontane centre of endemism and diversity. The South Africa Centre of diversity and endemism was explored in greater detail to understand biogeographical patterns. Location Africa, Afromontane Region, southern Africa, Madagascar and Yemen. Methods Diversity and endemism for the genus were examined at the continental scale using a chorological approach. Biogeographical patterns and endemism in the South Africa Centre were examined in greater detail using chorology, phenetics, parsimony analysis of endemicity (PAE) and mapping of range‐restricted taxa. Results Six centres of diversity were recovered, five of which are also centres of endemism. Eight subcentres of diversity are proposed, of which only two are considered subcentres of endemism. The South Africa Centre is the most species‐rich region and the largest centre of endemism for Kniphofia. The phenetic analysis of the South Africa Centre at the full degree square scale recovered three biogeographical areas that correspond with the subcentres obtained from the chorological analysis. The PAE (at the full degree square scale) and the mapping of range‐restricted taxa recovered two and six areas of endemism (AOEs), respectively. These latter two approaches produced results of limited value, possibly as a result of inadequate collecting of Kniphofia species. Only two AOEs were identified by PAE and these are embedded within two of the six AOEs recovered by the mapping of range‐restricted taxa. All the above AOEs are within the three subcentres found by chorological and phenetic analysis (at the full degree square scale) for the South Africa Centre. Main conclusions The centres for Kniphofia broadly correspond to the Afromontane regional mountain systems, but with some notable differences. We regard Kniphofia as a floristic indicator of the Afromontane Region sensu lato. In southern Africa, the phenetic approach at the full‐degree scale retrieved areas that correlate well with those obtained by the chorological approach.  相似文献   

6.
A standardized sampling method was used to evaluate turnover (β diversity) among cactus species assemblages along a 798 km long latitudinal megatransect across the Chihuahuan Desert Region, from north-central Mexico to southern Texas. A total of 71 cactus species were found along the megatransect, 66.2% of which appeared at low frequencies, mostly as a consequence of their highly discontinuous distribution pattern. At the scale the study was conducted, there was always species turnover among cactus assemblages. The rate of turnover among contiguous sites primarily fluctuated from low to medium, but when all site combinations were considered (contiguous and non-contiguous), medium β diversity values were predominant (β = 0.331–0.66); however, 25.4% of the site pair combinations registered high values (β = 0.661–1.0). Our results showed that turnover among cactus species assemblages in the CDR does not consist for the most part of a process of species succession in the geographic space. Instead, we concluded that the continuous spatial changes in cactus species composition are primarily explained by the commonly intermittent distribution patterns of the species, by the presence in the megatransect of species at the margin of their distribution range, and, to a lesser extent, by the existence of narrowly endemic species.  相似文献   

7.
The majority of the approximately 80-90 species in subtribe Arctotidinae occur in southern Africa with the centre of diversity in the winter-rainfall region. Three species are restricted to afromontane eastern Africa and three species are endemic to Australia. To investigate biogeographic and phylogenetic relationships within Arctotidinae, sequence data from four cpDNA regions (psbA-trnH, trnT-trnL and trnL-trnF spacers and trnL intron) and the ITS nrDNA region for 59 Arctotidinae species were analyzed with parsimony and Bayesian-inference approaches. Eight well-supported major lineages were resolved. The earliest-diverging extant lineages are afromontane or inhabit mesic habitats, whereas almost all sampled taxa from the winter-rainfall and semi-arid areas have diverged more recently. Molecular dating estimated that the major clades diverged during the Miocene and Pliocene, which is coincident with the trend of increasing rainfall seasonality, aridification and vegetation changes in southwestern Africa. Trans-oceanic dispersal to Australia was estimated to have occurred during the Pliocene.  相似文献   

8.
Global diversity hotspots and conservation priorities for sharks   总被引:1,自引:0,他引:1  
Sharks are one of the most threatened groups of marine animals, as high exploitation rates coupled with low resilience to fishing pressure have resulted in population declines worldwide. Designing conservation strategies for this group depends on basic knowledge of the geographic distribution and diversity of known species. So far, this information has been fragmented and incomplete. Here, we have synthesized the first global shark diversity pattern from a new database of published sources, including all 507 species described at present, and have identified hotspots of shark species richness, functional diversity and endemicity from these data. We have evaluated the congruence of these diversity measures and demonstrate their potential use in setting priority areas for shark conservation. Our results show that shark diversity across all species peaks on the continental shelves and at mid-latitudes (30-40 degrees N and S). Global hotspots of species richness, functional diversity and endemicity were found off Japan, Taiwan, the East and West coasts of Australia, Southeast Africa, Southeast Brazil and Southeast USA. Moreover, some areas with low to moderate species richness such as Southern Australia, Angola, North Chile and Western Continental Europe stood out as places of high functional diversity. Finally, species affected by shark finning showed different patterns of diversity, with peaks closer to the Equator and a more oceanic distribution overall. Our results show that the global pattern of shark diversity is uniquely different from land, and other well-studied marine taxa, and may provide guidance for spatial approaches to shark conservation. However, similar to terrestrial ecosystems, protected areas based on hotspots of diversity and endemism alone would provide insufficient means for safeguarding the diverse functional roles that sharks play in marine ecosystems.  相似文献   

9.
Mediterranean‐type ecosystems (MTEs) are remarkable in their species richness and endemism, but the processes that have led to this diversity remain enigmatic. Here, we hypothesize that continent‐dependent speciation and extinction rates have led to disparity in diversity between the five MTEs of the world: the Cape, California, Mediterranean Basin, Chile, and Western Australia. To test this hypothesis, we built a phylogenetic tree for 280 Rhamnaceae species, estimated divergence times using eight fossil calibrations, and used Bayesian methods and simulations to test for differences in diversification rates. Rhamnaceae lineages in MTEs generally show higher diversification rates than elsewhere, but speciation and extinction dynamics show a pattern of continent‐dependence. We detected high speciation and extinction rates in California and significantly lower extinction rates in the Cape and Western Australia. The independent colonization of four of five MTEs may have occurred conterminously in the Oligocene/Early Miocene, but colonization of the Mediterranean Basin happened later, in the Late Miocene. This suggests that the in situ radiations of these clades were initiated before the onset of winter rainfall in these regions. These results indicate independent evolutionary histories of Rhamnaceae in MTEs, possibly related to the intensity of climate oscillations and the geological history of the regions.  相似文献   

10.
Tillmann  U. 《Journal of phycology》2003,39(S1):56-56
Invasive algal species have the potential to change the structure and ecology of native algal communities. One well-known invader, the large Japanese kelp Undaria pinnatifida , has recently become established at several locations along the central and southern California coast (Monterey, Santa Barbara, Catalina, and others). Previous to its introduction in the northeastern Pacific, Undaria has become established along the coastlines of several countries, including Australia, New Zealand, Argentina, England, and France. However, the seasonal population dynamics, rate of spread, and impact on local communities at each invasion site varies. Undaria in the Santa Barbara, CA harbor exhibits two distinct recruitment pulses per year (fall, late winter), with nonoverlapping generations of adult individuals. Individuals can grow rapidly and become reproductive a month after appearing as recruits (2–3 cm long), indicating a potential for rapid spread. However, Undaria may be effectively controlled by grazing via natural recruitment of the kelp crab Pugettia producta. However, Undaria invasions in other California invasions have not been controlled by herbivory, and Undaria populations in these areas have the potential to compete with a wide diversity of native California kelp species for habitat space and light.  相似文献   

11.
Aim To relate patterns of distribution of marine echinoderms and decapods around southern Australia to major ecological and historical factors. Location Shallow‐water (0–100 m) marine waters off southern Australia, south of 30° S. Methods (1) Record the presence/absence of known echinoderm and decapod species in cells of c. 1° latitude and longitude, along the coast of southern mainland Australia and Tasmania. (2) Describe patterns in species composition, species richness and endemism through gradient analysis, ordination and cluster analysis. (3) Relate these patterns to distance and temperature gradients, the area of continental shelf, the average size of species range, and known historical factors. Results Species composition varied with both latitude and longitude. Species richness was relatively constant from east to west but graded with latitude from high in the warm‐temperate regions around Perth and Sydney to low in cool‐temperate southern Tasmania. Species richness was not related to the area of continental shelf or average species range size. Species turnover was not correlated with rates of temperature change. It was problematic to separate distance from temperature gradients, but there was evidence that the southern distribution limits of some species are related to minimum sea surface temperature. Within the taxonomic groups surveyed, evolutionary radiation has been largely limited to a few cosmopolitan species‐rich genera. Main conclusions There are historical as well as ecological hypotheses explaining the latitudinal gradient of marine species richness in southern Australia: (1) the continual invasion and speciation of species of tropical origin as Australia has split from Gondwana and drifted northward; (2) progressive extinction of some Gondwanan cool‐temperate species at the limits of their range; (3) low level of immigration of additional cool‐temperate species; and (4) some in situ endemic speciation.  相似文献   

12.
13.
We compiled herbarium specimen data to provide an improved characterization of geographic patterns of diversity using indices of species diversity and floristic similarity based on rarefaction principles. A dataset of 3650 georeferenced plant specimens belonging to Orchidaceae and Rubiaceae endemic to Atlantic Central Africa was assembled to assess species composition per half‐degree or one‐degree grid cells. Local diversity was measured by the expected number of species (Sk) per grid cell found in subsamples of increasing size and compared with raw species richness (SR). A nearly unbiased estimator of the effective number of species per grid cell was also used, allowing quantification of ratios of ‘true diversity’ between grid cells. Species turnover was measured using a presence/absence‐based similarity index (Sørensen) and an abundance‐based index that corrects for sampling bias (NNESS). Our results confirm that the coastal region of Cameroon is more diverse in endemic species than those more inland. The southern part of this coastal forest is, however, as diverse as the more intensively inventoried northern part, and should also be recognized as an important center of endemism. A strong congruence between Sørensen and NNESS similarity matrices lead to similar delimitations of floristic units. Hence, heterogeneous sampling seems to confer more bias when measuring patterns of local diversity using raw species richness than species turnover using Sørensen index. Overall, we argue that subsampling methods represent a useful way to assess diversity gradients using herbarium specimens while correcting for heterogeneous sampling effort. Abstract in French is available in the online version of this article.  相似文献   

14.
Aim Taxonomic comparisons of alien floras across climatically similar regions have been proposed as a powerful approach for increasing our understanding of plant invasions across scales. However, detailed comparisons between the alien biotas of climatically similar regions are scarce. This study aims to compare the taxonomic patterns of alien species richness in mediterranean‐type climate areas of central Chile and California, in order to better understand how climatically similar regions converge or diverge in terms of their alien flora. Location Central Chile and California, United States. Methods We compared the alien floras of the state of California in the United States and central Chile, considering within‐region variation and taxonomic composition up to the species level. To test for within‐region variation, administrative units and counties were grouped within seven latitudinal bands for each region. We tested for differences in the relative contributions of the various origins of the naturalized species to each region. We used a family naturalization index to establish which families had relatively higher numbers of naturalized species in each region. We evaluated the similarity, using cluster analyses with Jaccard’s similarity index, of alien taxa between regions and latitudinal bands using presence–absence matrices at the species, genus and family levels. We used principal components analysis to determine the presence of a compositional gradient including all latitudinal bands. Results We recorded 1212 alien plant species in California and 593 in central Chile, of which 491 are shared between the two regions. These figures include 25 species that are native to California and 37 that are native to Chile. A comparison between the alien floras of central Chile and California reveals three major trends: (1) higher naturalized species diversity for California than for Chile, at all taxonomic levels; (2) differences in the proportion of species according to origin, with America, Africa, Asia and Australia providing a larger number of species in California than in Chile; (3) segregation between regions in terms of taxonomic composition of their alien flora, and a rather weak differentiation within regions; and (4) a trend towards higher similarity between the alien floras of latitudinal bands associated with higher levels of human disturbances. Main conclusions The alien floras of central Chile and California are significantly different, but this difference diminishes in highly disturbed areas. Thus, the current high levels of species movement caused by globalization, together with increasing levels of anthropogenic disturbances, should reduce the differentiation of the alien floras in these regions, increasing overall biotic homogenization.  相似文献   

15.
  1. South Africa is a megadiverse country. Here, natural communities are unevenly distributed across, and within, seven distinct biomes. In such heterogeneous landscapes, understanding spatial patterns of biodiversity is essential for planning and implementing efficient conservation measures.
  2. The southern Kalahari, forming part of South Africa's savanna biome, is an arid region of peculiarly high diversity and endemism. The responses of orthopteran assemblages to changing environmental conditions across the Kalahari were investigated by comparing alpha and beta diversity levels across discrete vegetation types in the Tswalu Kalahari Reserve. The degree of association between species and specific vegetation types were also studied and how a key life history trait - dispersal ability – influences community composition was determined.
  3. This study identified 46 grasshopper species within the reserve, which compares well with richness levels in other more productive habitats of the country. Local (alpha) diversity was higher in mountain and mountain-ecotone sites versus vegetation types on the plains, and species turnover was also exceptionally high – approaching 100% - across these two groups. The few (3) dispersal limited species recovered were associated only with the mountain-ecotone group, with emergent dominance patterns suggesting that competitive rather than dispersal abilities determine the species composition of unique assemblages in the landscape.
  4. Topology plays a key role in maintaining spatial diversity across the southern Kalahari landscape. Mountains, and their ecotones, promote not only species turnover, but also richness and functional diversity. These can be viewed as islands of diversity, and should be targeted priority areas for conservation beyond the boundaries of protected areas.
  相似文献   

16.
Aim The Southern African orchid flora is taxonomically well known, but the biogeographical and diversity patterns have not yet been analysed. In particular, we want to establish whether (a) it is, like the Southern African flora in general, more diverse than would be expected from its latitude and area; (b) it is an African flora, or whether it contains palaeoendemic relicts of a Gondwanan orchid flora; (c) the diversity and endemism in the orchid flora is concentrated in particular biomes and habitat types; and (d) the patterns of endemism in the flora can be accounted for by current environmental parameters, or whether we need to invoke historical explanations. Location Southern Africa. Methods We used the recent floristic account of the Southern African orchids, in conjunction with a data base of over 14,642 herbarium records, to assign the species and subspecies of Southern African orchids to biomes, habitats, and clades. We explored the relationship between the number and endemism of entities (species, subspecies and varieties) and the biomes and habitats. We compared the richness of this flora with that of 31 other regions from all continents and latitudes, to establish whether the Southern African orchid flora is richer or poorer than expected. We assigned the Southern African orchid species to 16 monophyletic clades and mapped the global distribution of these clades to establish the continental affinities of the flora. Main conclusions The Southern African orchid flora is not any more diverse than could be expected from its latitude or area, while the two tropical African floras included were less diverse than expected. Latitude is an excellent predictor of regional orchid species richness; this might indicate that available habitat is more important for orchid diversity than gross area available, since latitude is probably correlated with the extent of suitable habitat. The Southern African orchid flora is clearly an African flora, since all clades are also found in tropical Africa, while many of them are absent from the Americas or Asia. Conversely, while most African orchid clades are also found in Southern Africa, both the Americas and Asia contain many clades absent from Africa. The distribution of orchid entities among the biomes in Southern Africa is very uneven, with two of the seven biomes totally devoid of orchids. Habitats and biomes that have no equivalent in tropical Africa are high in endemism, and habitats and biomes which are also well developed in tropical Africa are low in endemism. Endemism appears largely explained in terms of modern habitats. However, two patterns (the high endemism in the Succulent Karoo and the lack of endemism in the southern Cape among epiphytic orchids) may also be explained in terms of Quaternary climatic changes.  相似文献   

17.
Recent taxonomic revisions of the freshwater crabs of southern Africa (Angola, Botswana, Lesotho, Mozambique, Namibia, South Africa, Swaziland, Zambia and Zimbabwe) allow accurate depictions of their diversity, distribution patterns and conservation status. The southern African region is home to nineteen species of freshwater crabs all belonging to the genus Potamonautes (family Potamonautidae). These crabs show high levels of species endemism (84%) to the southern African region and to the country of South Africa (74%). The conservation status of each species is assessed using the IUCN (2003) Red List criteria, based on detailed compilations of the majority of known specimens. The results indicate that one species should be considered vulnerable, fifteen species least concern and three species data deficient. The results have been utilized by the IUCN for Red Lists, and may prove useful when developing a conservation strategy for southern Africa’s endemic freshwater crab fauna.  相似文献   

18.
Andrés Baselga 《Ecography》2008,31(2):263-271
This study assessed the diversity patterns of a large family of beetles, Cerambycidae, in Europe and tested the following hypotheses: 1) richness gradients of this hyperdiverse taxon are driven by water and energy variables; 2) endemism is explained by the same factors, but variation between areas also reflects post‐glacial re‐colonization processes; and 3) faunal composition is determined by the same climatic variables and, therefore, beta diversity (species turnover) is related to richness gradients. Species richness, endemism and beta diversity were modelled using inventories of 37 European territories, built from a database containing the distributions of 609 species. Area, spatial position, and nine topographical and climatic variables were used as predictors in regression and constrained analysis of principal coordinates modelling. Species richness was mostly explained by a temperature gradient, which produced a south‐to‐north decreasing richness gradient. Endemism followed the same pattern, but was also determined by longitudinal variation, peaking in the southwestern and southeastern corners of the continent. Faunal turnover was explained by an important purely spatial pattern and a spatially structured environmental gradient. Thus, contrary to other groups, cerambycid richness was mostly explained by environmental energy, but not by water availability. Endemism was concentrated in the Iberian and Greek peninsulas, but not in Italy. Thus, the latter area may have been the major source of post‐glacial re‐colonization for European longhorn beetles or, otherwise, a poor refuge during glaciations. Turnover patterns were independent of the richness gradient, because northern faunas are nested in southern ones. Turnover, in contrast to richness, was driven by both the independent effects of climate and geographic constraints that might reflect dispersal limitation or stochastic colonization events, suggesting that richness gradients are more environmentally deterministic phenomena than turnover patterns.  相似文献   

19.
Aim To examine the influence of climatic extinction filtering during the last glacial maximum (LGM; c. 18,000 yr bp ) and of the subsequent recolonization of forest faunas on contemporary assemblage composition in southern African forests. Location South Africa, Mozambique, Swaziland, Zimbabwe. Methods Data comprised presence/absence by quarter‐degree grid cell for forest‐dependent and forest‐associated birds, non‐volant mammals and frogs. Twenty‐one forest subregions were assigned to one of three previously identified forest types: Afrotemperate, scarp, and Indian Ocean coastal belt. Differences among forest types were examined through patterns and gradients of species richness and endemism, assemblage similarity, species turnover, and coefficients of species dispersal direction. The influence of contemporary environment on assemblage composition was investigated using partial canonical correspondence analysis. Several alternative biogeographical hypotheses for the recolonization of forest faunas were tested. Results Afrotemperate faunas are relatively species‐poor, have low species turnover, and are unsaturated and infiltrated by generalist species. In northern and central regions, communities are supplemented by recolonization from scarp forest refugia, and among frogs by autochthanous speciation in localized refugia. Scarp faunas are relatively species‐rich, contain many forest‐dependent species, have high species turnover, and overlap with coastal and Afrotemperate faunas. Coastal forests are relatively species‐rich with high species turnover. Main conclusions Afrotemperate communities were affected most by climatic extinction filtering events. Scarp forests were Afrotemperate refugia during the LGM and are a contemporary overlap zone between Afrotemperate and coastal forest. Coastal faunas derive from post‐LGM colonization along the eastern seaboard from tropical East African refugia. The greatest diversity is achieved in scarp and coastal forest faunas in northern KwaZulu–Natal province. This historical centre of diversity has influenced the faunal diversity of nearly all other forests in South Africa. The response of vertebrate taxa to large‐scale, historical processes is dependent on their relative mobility: forest birds best illustrate patterns resulting from post‐glacial faunal dispersal, while among mammals and frogs the legacy of climatic extinction filtering remains stronger.  相似文献   

20.
Southern Africa boasts a wealth of endemic fauna and flora, comprising both massive recent radiations such as those characteristic of the Cape flora, and solitary ancient species such as the peculiar desert gymnosperm Welwitschia. This study was undertaken to identify ancient biological lineages (tetrapod and vascular plant lineages of Eocene age or older) endemic to southern Africa, and to map their distribution across the region. Twenty‐seven (17 plant and ten animal) lineages were identified, and distribution maps were generated for each of them across 74 operational geographic units, which were then combined into total endemism and corrected weighted endemism per unit area. Total endemism peaked along South Africa's coast and Great Escarpment, but in the case of weighted endemism high values were also recorded along other portions of the Great Escarpment further north. A review of the lineages sister to southern African ancient endemic lineages showed that these are often globally widespread, and many of them differ substantially from the southern African ancient lineages in terms of morphology and ecology. The mechanisms of ancient lineage survival in the region are discussed, and their importance for conservation in southern Africa is emphasised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号