首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
人类基因组上的假基因   总被引:5,自引:0,他引:5  
周光金  余龙  赵寿元 《生命科学》2004,16(4):210-214,230
假基因是基因组上与编码基因序列非常相似的非功能性基因组DNA拷贝,一般情况都不被转录,且没有明确生理意义。假基因根据其来源可分为复制假基因和已加工假基因。迄今为止,明确鉴定的人类假基因多为已加工假基因,有8000个之多。在Swiss-Prot/TrEMBL收录的编码蛋白质的将近25500个基因序列中,约10%在基因组中有一个或多个近全长已加工假基因。其余的功能基因都没有已加工假基因。核糖体蛋白基因具有最多数量的已加工假基因,约有l700个(占已加工假基因数的22%),少数基因,如cyclophilinA、肌动蛋白(actin)、角蛋白(keratin)、GAPDH、细胞色素C(cytochromec)和nucleophosmin等则有很多份已加工假基因。总体上讲,假基因在人类染色体上的分布与染色体长度成比例,但已加工假基因在GC含量为41%~46%的染色体区域密度最高。已加工假基因的拷贝数和功能基因在生殖器官中的表达高度一致,说明许多假基因发生在胚胎阶段,另外也和基因中GC含量和基因大小密切相关。假基因的准确鉴定对基因组进化、分子医学研究和医学应用具有重要意义。  相似文献   

12.
13.
14.
15.
16.
17.
The myosin light chain kinase (MYLK) gene is duplicated on human chromosome 3 (3q13-->q21; 3p13), two sites known to contain olfactory receptor (OR) genes. The 3p13 site contains a MYLK pseudogene (MYLKP) associated with a cluster of OR pseudogenes and therefore could have arisen from the duplication of a large region in 3q13-->q21. Here, we present the localization of the MYLK gene in a >5-Mb region of the chromosome 3q21 integrated map. MYLK colocalizes with marker D3S3552. OR genes are absent from this region, suggesting that the 3p13 duplicated region incurred further rearrangements during evolution.  相似文献   

18.
19.
Duplicated pseudogenes in the human genome are disabled copies of functioning parent genes. They result from block duplication events occurring throughout evolutionary history. Relatively recent duplications (with sequence similarity ≥90% and length ≥1 kb) are termed segmental duplications (SDs); here, we analyze the interrelationship of SDs and pseudogenes. We present a decision-tree approach to classify pseudogenes based on their (and their parents’) characteristics in relation to SDs. The classification identifies 140 novel pseudogenes and makes possible improved annotation for the 3172 pseudogenes located in SDs. In particular, it reveals that many pseudogenes in SDs likely did not arise directly from parent genes, but are the result of a multi-step process. In these cases, the initial duplication or retrotransposition of a parent gene gives rise to a ‘parent pseudogene’, followed by further duplication creating duplicated–duplicated or duplicated–processed pseudogenes, respectively. Moreover, we can precisely identify these parent pseudogenes by overlap with ancestral SD loci. Finally, a comparison of nucleotide substitutions per site in a pseudogene with its surrounding SD region allows us to estimate the time difference between duplication and disablement events, and this suggests that most duplicated pseudogenes in SDs were likely disabled around the time of the original duplication.  相似文献   

20.
Non-functional trnF pseudogenes that rarely occur in embryophytes have been found in Solanaceae. We have sequenced the trnL-F intergenic spacer of four species of Solanum, and found duplicated regions of the original trnF gene. These repeats were 94–260 bp long causing large length variation in the trnL-F intergenic spacer resulting from differences in pseudogene copy number (2–4). The duplicated trnF regions are comprised of several highly structured motifs, which were partial residues, or entire parts of the Anticodon, T- and D-domains of the original gene, but all lacked the acceptor stems at the 5′- or 3′-end. Pseudogenes included several transitions and transversions in their sequences compared to the original trnF gene. Among pseudogene copies, T-domains were more frequent and fragmented than D-domain elements. Our results demonstrate that although chloroplast evolution is uniform such structural duplications in the sequences used for phylogenetic reconstructions should be treated with great caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号