首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pairing of sister chromatids in interphase facilitates error-free homologous recombination (HR). Sister chromatids are held together by cohesin, one of three Structural Maintenance of Chromosomes (SMC) complexes. In mitosis, chromosome condensation is controlled by another SMC complex, condensin, and the type II topoisomerase (Top2). In prophase, cohesin is stripped from chromosome arms, but remains at centromeres until anaphase, whereupon it is removed via proteolytic cleavage. The third SMC complex, Smc5/6, is generally described as a regulator of HR-mediated DNA repair. However, cohesin and condensin are also required for DNA repair, and HR genes are not essential for cell viability, but the SMC complexes are. Smc5/6 null mutants die in mitosis, and in fission yeast, Smc5/6 hypomorphs show lethal mitoses following genotoxic stress, or when combined with a Top2 mutant, top2-191. We found these mitotic defects are due to retention of cohesin on chromosome arms. We also show that Top2 functions in the cohesin cycle, and accumulating data suggests this is not related to its decatenation activity. Thus the SMC complexes and Top2 functionally interact, and any DNA repair function ascribed to Smc5/6 is likely a reflection of a more fundamental role in the regulation of chromosome structure.  相似文献   

2.
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.  相似文献   

3.
Maintaining genomic stability is critical for the prevention of disease. Numerous DNA repair pathways help to maintain genomic stability by correcting potentially lethal or disease-causing lesions to our genomes. Mounting evidence suggests that the post-translational modification sumoylation plays an important regulatory role in several aspects of DNA repair. The E3 SUMO ligase MMS21/NSE2 has gained increasing attention for its function in homologous recombination (HR), an error-free DNA repair pathway that mediates repair of double-strand breaks (DSBs) using the sister chromatid as a repair template. MMS21/NSE2 is part of the SMC5/6 complex, which has been shown to facilitate DSB repair, collapsed replication fork restart, and telomere elongation by HR. Here, I review the function of the SMC5/6 complex and its associated MMS21/NSE2 SUMO ligase activity in homologous recombination.  相似文献   

4.
Structure chromosome (SMC) proteins organize the core of cohesin, condensin and Smc5-Smc6 complexes. The Smc5-Smc6 complex is required for DNA repair, as well as having another essential but enigmatic function. Here, we generated conditional mutants of SMC5 and SMC6 in budding yeast, in which the essential function was affected. We show that mutant smc5-6 and smc6-9 cells undergo an aberrant mitosis in which chromosome segregation of repetitive regions is impaired; this leads to DNA damage and RAD9-dependent activation of the Rad53 protein kinase. Consistent with a requirement for the segregation of repetitive regions, Smc5 and Smc6 proteins are enriched at ribosomal DNA (rDNA) and at some telomeres. We show that, following Smc5-Smc6 inactivation, metaphase-arrested cells show increased levels of X-shaped DNA (Holliday junctions) at the rDNA locus. Furthermore, deletion of RAD52 partially suppresses the temperature sensitivity of smc5-6 and smc6-9 mutants. We also present evidence showing that the rDNA segregation defects of smc5/smc6 mutants are mechanistically different from those previously observed for condensin mutants. These results point towards a role for the Smc5-Smc6 complex in preventing the formation of sister chromatid junctions, thereby ensuring the correct partitioning of chromosomes during anaphase.  相似文献   

5.
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage–induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage–induced recombinants in G2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.  相似文献   

6.
The structural maintenance of chromosomes (Smc) family members Smc5 and Smc6 are both essential in budding and fission yeasts. Yeast smc5/6 mutants are hypersensitive to DNA damage, and Smc5/6 is recruited to HO-induced double-strand breaks (DSBs), facilitating intersister chromatid recombinational repair. To determine the role of the vertebrate Smc5/6 complex during the normal cell cycle, we generated an Smc5-deficient chicken DT40 cell line using gene targeting. Surprisingly, Smc5(-) cells were viable, although they proliferated more slowly than controls and showed mitotic abnormalities. Smc5-deficient cells were sensitive to methyl methanesulfonate and ionizing radiation (IR) and showed increased chromosome aberration levels upon irradiation. Formation and resolution of Rad51 and gamma-H2AX foci after irradiation were altered in Smc5 mutants, suggesting defects in homologous recombinational (HR) repair of DNA damage. Ku70(-/-) Smc5(-) cells were more sensitive to IR than either single mutant, with Rad54(-/-) Smc5(-) cells being no more sensitive than Rad54(-/-) cells, consistent with an HR function for the vertebrate Smc5/6 complex. Although gene targeting occurred at wild-type levels, recombinational repair of induced double-strand breaks was reduced in Smc5(-) cells. Smc5 loss increased sister chromatid exchanges and sister chromatid separation distances in mitotic chromosomes. We conclude that Smc5/6 regulates recombinational repair by ensuring appropriate sister chromatid cohesion.  相似文献   

7.
Sister chromatids are often arranged as incompletely aligned entities in interphase nuclei of Arabidopsis thaliana. The STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC) 5/6 complex, together with cohesin, is involved in double-strand break (DSB) repair by sister chromatid recombination in yeasts and mammals. Here, we analyzed the function of genes in Arabidopsis. The wild-type allele of SMC5 is essential for seed development. Each of the two SMC6 homologs of Arabidopsis is required for efficient repair of DNA breakage via intermolecular homologous recombination in somatic cells. Alignment of sister chromatids is enhanced transiently after X-irradiation (and mitomycin C treatment) in wild-type nuclei. In the smc5/6 mutants, the x-ray–mediated increase in sister chromatid alignment is much lower and delayed. The reduced S phase–established cohesion caused by a knockout mutation in one of the α-kleisin genes, SYN1, also perturbed enhancement of sister chromatid alignment after irradiation, suggesting that the S phase–established cohesion is a prerequisite for correct DSB-dependent cohesion. The radiation-sensitive51 mutant, deficient in heteroduplex formation during DSB repair, showed wild-type frequencies of sister chromatid alignment after X-irradiation, implying that the irradiation-mediated increase in sister chromatid alignment is a prerequisite for, rather than a consequence of, DNA strand exchange between sister chromatids. Our results suggest that the SMC5/6 complex promotes sister chromatid cohesion after DNA breakage and facilitates homologous recombination between sister chromatids.  相似文献   

8.
Cohesin is a protein complex that plays an essential role in pairing replicated sister chromatids during cell division. The vertebrate cohesin complex consists of four core components including structure maintenance of chromosomes proteins SMC1 and SMC3, RAD21, and SA2/SA1. Extensive research suggests that cohesin traps the sister chromatids by a V-shaped SMC1/SMC3 heterodimer bound to the RAD21 protein that closes the ring. Accordingly, the single "ring" model proposes that two sister chromatids are trapped in a single ring that is composed of one molecule each of the 4 subunits. However, evidence also exists for alternative models. The hand-cuff model suggests that each sister chromatid is trapped individually by two rings that are joined through the shared SA1/SA2 subunit. We report here the determination of cohesin subunit stoichiometry of endogenous cohesin complex by quantitative mass spectrometry. Using qConCAT-based isotope labeling, we show that the cohesin core complex contains equimolar of the 4 core components, suggesting that each cohesin ring is closed by one SA1/SA2 molecule. Furthermore, we applied this strategy to quantify post-translational modification-dependent cohesin interactions. We demonstrate that quantitative mass spectrometry is a powerful tool for measuring stoichiometry of endogenous protein core complex.  相似文献   

9.
Pavlova SV  Zakiian SM 《Genetika》2003,39(10):1301-1316
Structural chromatin proteins of the SMC (Structural Maintenance of Chromosomes) family play an important role in structural DNA reorganization in pro- and eukaryotes. Eukaryotic SMC proteins are the core components of the cohesin and condensin complexes. The cohesin complex is responsible for sister chromatid and homolog cohesion in mitosis and meiosis. The condensin complex uses ATP energy to induce positive coiled-coils in DNA, which results in compaction of the latter and formation of mitotic chromosome scaffold. In addition, the SMC proteins constitute recombination and recombination repair complexes. In hermaphrodites of nematode Caenorhabditis elegans, the SMC protein-containing complex controls dosage compensation and inactivation of the X chromosome genes.  相似文献   

10.
11.
The structural maintenance of chromosomes (SMC) protein encoded by the fission yeast rad18 gene is involved in several DNA repair processes and has an essential function in DNA replication and mitotic control. It has a heterodimeric partner SMC protein, Spr18, with which it forms the core of a multiprotein complex. We have now isolated the human orthologues of rad18 and spr18 and designated them hSMC6 and hSMC5. Both proteins are about 1100 amino acids in length and are 27-28% identical to their fission yeast orthologues, with much greater identity within their N- and C-terminal globular domains. The hSMC6 and hSMC5 proteins interact to form a tight complex analogous to the yeast Rad18/Spr18 heterodimer. In proliferating human cells the proteins are bound to both chromatin and the nucleoskeleton. In addition, we have detected a phosphorylated form of hSMC6 that localizes to interchromatin granule clusters. Both the total level of hSMC6 and its phosphorylated form remain constant through the cell cycle. Both hSMC5 and hSMC6 proteins are expressed at extremely high levels in the testis and associate with the sex chromosomes in the late stages of meiotic prophase, suggesting a possible role for these proteins in meiosis.  相似文献   

12.
Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways.  相似文献   

13.
Structural chromatin proteins of the SMC (Structural Maintenance of Chromosomes) family play an important role in structural DNA reorganization in pro- and eukaryotes. Eukaryotic SMC proteins are the core components of the cohesin and condensin complexes. The cohesin complex is responsible for sister chromatid and homolog cohesion in mitosis and meiosis. The condensin complex uses ATP energy to induce positive coiled-coils in DNA, which results in compaction of the latter and formation of mitotic chromosome scaffold. In addition, the SMC proteins constitute recombination and recombination repair complexes. In hermaphrodites of nematode Caenorhabditis elegans, the SMC protein-containing complex controls dosage compensation and inactivation of the X chromosome genes.  相似文献   

14.
Chromosomes are subjected to massive reengineering as they are replicated, transcribed, repaired, condensed, and segregated into daughter cells. Among the engineers are three large protein complexes collectively known as the structural maintenance of chromosome (SMC) complexes: cohesin, condensin, and Smc5/6. As their names suggest, cohesin controls sister chromatid cohesion, condensin controls chromosome condensation, and while precise functions for Smc5/6 have remained somewhat elusive, most reports have focused on the control of recombinational DNA repair. Here, we focus on cohesin and Smc5/6 function. It is becoming increasingly clear that the functional repertoires of these complexes are greater than sister chromatid cohesion and recombination. These SMC complexes are emerging as interrelated and cooperating factors that control chromosome dynamics throughout interphase. However, they also release their embrace of sister chromatids to enable their segregation at anaphase, resetting the dynamic cycle of SMC-chromosome interactions.  相似文献   

15.
Condensin and cohesin are chromosomal protein complexes required for chromosome condensation and sister chromatid cohesion, respectively. They commonly contain the SMC (structural maintenance of chromosomes) subunits consisting of a long coiled-coil with the terminal globular domains and the central hinge. Condensin and cohesin holo-complexes contain three and two non-SMC subunits, respectively. In this study, DNA interaction with cohesin and condensin complexes purified from fission yeast was investigated. The DNA reannealing activity is strong for condensin SMC heterodimer but weak for holo-condensin, whereas no annealing activity is found for cohesin heterodimer SMC and Rad21-bound heterotrimer complexes. One set of globular domains of the same condensin SMC is essential for the DNA reannealing activity. In addition, the coiled-coil and hinge region of another SMC are needed. Atomic force microscopy discloses the molecular events of DNA reannealing. SMC assembly that occurs on reannealing DNA seems to be a necessary intermediary step. SMC is eliminated from the completed double-stranded DNA. The ability of heterodimeric SMC to reanneal DNA may be regulated in vivo possibly through the non-SMC heterotrimeric complex.  相似文献   

16.
Structural maintenance of chromosomes (SMC) proteins play central roles in chromosome organization and dynamics. They have been classified into six subtypes, termed SMC1 to SMC6, and function as heterodimer components of large protein complexes that also include several non-SMC proteins. The SMC2-SMC4 and SMC1-SMC3 complexes are also known as condensin and cohesin, respectively, but the recently identified SMC5 and SMC6 complex is less well characterized. Here, we report that NSE1 from Saccharomyces cerevisiae encodes a novel non-SMC component of the SMC5(Yol034wp)-SMC6(Rhc18p) complex corresponding to the 2-3-MDa molecular mass. Nse1p is essential for cell proliferation and localizes primarily in the nucleus. nse1 mutants are highly sensitive to DNA-damaging treatments and exhibit abnormal cellular morphologies, suggesting aberrant mitosis as a terminal morphological phenotype. These results are consistent with the reported features of the Schizosaccharomyces pombe SMC6 gene, rad18, which is thought to be involved in recombinational DNA repair. We conclude that Nse1p and the SMC5-SMC6 heterodimer together form a high molecular mass complex that is conserved in eukaryotes and required for both DNA repair and proliferation.  相似文献   

17.
Cohesin plays a critical role in sister chromatid cohesion, double-stranded DNA break repair and regulation of gene expression. However, the mechanism of how cohesin directly interacts with DNA remains unclear. We report single-molecule experiments analyzing the interaction of the budding yeast cohesin Structural Maintenance of Chromosome (SMC)1-SMC3 heterodimer with naked double-helix DNA. The cohesin heterodimer is able to compact DNA molecules against applied forces of 0.45 pN, via a series of extension steps of a well-defined size ≈130 nm. This reaction does not require ATP, but is dependent on DNA supercoiling: DNA with positive torsional stress is compacted more quickly than negatively supercoiled or nicked DNAs. Un-nicked torsionally relaxed DNA is a poor substrate for the compaction reaction. Experiments with mutant proteins indicate that the dimerization hinge region is crucial to the folding reaction. We conclude that the SMC1-SMC3 heterodimer is able to restructure the DNA double helix into a series of loops, with a preference for positive writhe.  相似文献   

18.
Chromosome stability depends on accurate chromosome segregation and efficient DNA double-strand break (DSB) repair. Sister chromatid cohesion, established during S phase by the protein complex cohesin, is central to both processes. In the absence of cohesion, chromosomes missegregate and G2-phase DSB repair fails. Here, we demonstrate that G2-phase repair also requires the presence of cohesin at the damage site. Cohesin components are shown to be recruited to extended chromosome regions surrounding DNA breaks induced during G2. We find that in the absence of functional cohesin-loading proteins (Scc2/Scc4), the accumulation of cohesin at DSBs is abolished and repair is defective, even though sister chromatids are connected by S phase generated cohesion. Evidence is also provided that DSB induction elicits establishment of sister chromatid cohesion in G2, implicating that damage-recruited cohesin facilitates DNA repair by tethering chromatids.  相似文献   

19.
Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.  相似文献   

20.
Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC1 beta, were suggested to be required for meiotic sister chromatid cohesion and DNA recombination. Here we show that SMC1 beta-deficient mice of both sexes are sterile. Male meiosis is blocked in pachytene; female meiosis is highly error-prone but continues until metaphase II. Prophase axial elements (AEs) are markedly shortened, chromatin extends further from the AEs, chromosome synapsis is incomplete, and sister chromatid cohesion in chromosome arms and at centromeres is lost prematurely. In addition, crossover-associated recombination foci are absent or reduced, and meiosis-specific perinuclear telomere arrangements are impaired. Thus, SMC1 beta has a key role in meiotic cohesion, the assembly of AEs, synapsis, recombination, and chromosome movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号