首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme activity synthesizing poly-beta-hydroxybutyrate (PHB) was mainly localized in the PHB-containing particulate fraction of Zoogloea ramigera I-16-M, when it grew flocculatedly in a medium supplemented with glucose. On the other hand, the enzyme activity remained in the soluble fraction when the bacterium grew dispersedly in a glucose-starved medium. The soluble PHB synthase activity became associated with the particulate fraction as PHB synthesis was initiated on the addition of glucose to the dispersed culture. Conversely, the enzyme activity was released from the PHB-containing granules to the soluble fraction when the flocculated culture was kept incubated without supplementing the medium with glucose. PHB synthase was also incorporated into the newly formed PHB fraction when partially purified soluble PHB synthase was incubated with D(-)-beta-hydroxybutyryl CoA in vitro. Although attempts to solubilize the particulate enzyme were unsuccessful, and the soluble enzyme became extremely unstable in advanced stages of purification, both PHB synthases had the same strict substrate specificity for D(-)-beta-hydroxybutyryl CoA, and showed the same pH optimum at 7.0.  相似文献   

2.
The enzyme activity synthesizing poly--hydroxybutyrate (PHB) was mainly localized in the PHB-containing particulate fraction ofZoogloea ramigera I-16-M, when it grew flocculatedly in a medium supplemented with glucose. On the other hand, the enzyme activity remained in the soluble fraction, when the bacterium grew dispersedly in a glucose-starved medium.The soluble PHB synthase activity became associated with the particulate fraction as PHB synthesis was initiated on the addition of glucose to the dispersed culture. Conversely, the enzyme activity was released from the PHB-containing granules to the soluble fraction when the flocculated culture was kept incubated without supplementing the medium with glucose.PHB synthase was also incorporated into the newly formed PHB fraction when partially purified soluble PHB synthase was incubated withd(-)--hydroxybutyryl CoA in vitro.Although attempts to solubilize the particulate enzyme were unsuccessful, and the soluble enzyme became extremely unstable in advanced stages of purification, both PHB synthases had the same strict substrate specificity ford(-)--hydroxybutyryl CoA, and showed the same pH optimum at 7.0.Non-Standard Abbreviations PHB poly--hydroxybutyrate  相似文献   

3.
Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-beta-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis.  相似文献   

4.
Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis.  相似文献   

5.
Production of polyhydroxybutyrate in sugarcane   总被引:2,自引:0,他引:2  
We report here the production of the bacterial polyester, polyhydroxybutyrate (PHB), in the crop species sugarcane ( Saccharum spp. hybrids). The PHB biosynthesis enzymes of Ralstonia eutropha [β-ketothiolase (PHAA), acetoacetyl-reductase (PHAB) and PHB synthase (PHAC)] were expressed in the cytosol or targeted to mitochondria or plastids. PHB accumulated in cytosolic lines at trace amounts, but was not detected in mitochondrial lines. In plastidic lines, PHB accumulated in leaves to a maximum of 1.88% of dry weight without obvious deleterious effects. Epifluorescence and electron microscopy of leaf sections from these lines revealed that PHB granules were visible in plastids of most cell types, except mesophyll cells. The concentration of PHB in culm internodes of plastidic lines was substantially lower than in leaves. Western blot analysis of these lines indicated that expression of the PHB biosynthesis proteins was not limiting in culm internodes. Epifluorescence microscopy of culm internode sections from plastidic lines showed that PHB granules were visible in most cell types, except photosynthetic cortical cells in the rind, and that the lower PHB concentration in culm internodes was probably a result of dilution of PHB-containing cells by the large number of cells with little or no PHB. We discuss strategies for producing PHB in mitochondria and mesophyll cell plastids, and for increasing PHB yields in culms.  相似文献   

6.
Nitrogenase-mediated H(2) accumulation of Rhodobacter sphaeroides under photoheterotrophic conditions is reduced directly by the hydrogenase activity catalyzing H(2) uptake and indirectly by energy-demanding metabolic processes such as poly-beta-hydroxybutyrate (PHB) formation. H(2) accumulation of R. sphaeroides was examined during cell growth under illumination of 15, 7, and 3 W/m(2). Mutations in either hupSL (H(2)-uptake hydrogenase) or phbC (PHB synthase) had no effect on nitrogenase activity. The nitrogenase activity of R. sphaeroides grown at 15 W/m(2), however, was 70% higher than that of cells grown at 3 W/m(2), while the H(2)-uptake hydrogenase activity was approximately 3-fold higher in the same comparison. Accordingly, H(2) uptake by hydrogenase, monitored by measuring the difference in H(2) accumulation between a hupSL-deletion mutant and the corresponding parental strain, appeared to reach a maximum level as illumination was increased to 15 W/m(2). On the other hand, the surplus energy due to lack of PHB formation led to a fixed increase in H(2) accumulation independent of light intensity, reflecting the fact that the cellular PHB content was not changed significantly depending on light intensity. Therefore, H(2) uptake by hydrogenase should be suppressed to achieve higher H(2) accumulation of R. sphaeroides, especially at 15 W/m(2).  相似文献   

7.
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha   总被引:1,自引:0,他引:1       下载免费PDF全文
Ralstonia eutropha H16 degraded (mobilized) previously accumulated poly(3-hydroxybutyrate) (PHB) in the absence of an exogenous carbon source and used the degradation products for growth and survival. Isolated native PHB granules of mobilized R. eutropha cells released 3-hydroxybutyrate (3HB) at a threefold higher rate than did control granules of nonmobilized bacteria. No 3HB was released by native PHB granules of recombinant Escherichia coli expressing the PHB biosynthetic genes. Native PHB granules isolated from chromosomal knockout mutants of an intracellular PHB (i-PHB) depolymerase gene of R. eutropha H16 and HF210 showed a reduced but not completely eliminated activity of 3HB release and indicated the presence of i-PHB depolymerase isoenzymes.  相似文献   

8.
A novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase (PhaZd) of Wautersia eutropha (formerly Ralstonia eutropha) H16 which shows similarity with the catalytic domain of the extracellular PHB depolymerase in Ralstonia pickettii T1 was identified. The positions of the catalytic triad (Ser190-Asp266-His330) and oxyanion hole (His108) in the amino acid sequence of PhaZd deduced from the nucleotide sequence roughly accorded with those of the extracellular PHB depolymerase of R. pickettii T1, but a signal peptide, a linker domain, and a substrate binding domain were missing. The PhaZd gene was cloned and the gene product was purified from Escherichia coli. The specific activity of PhaZd toward artificial amorphous PHB granules was significantly greater than that of other known intracellular PHB depolymerase or 3-hydroxybutyrate (3HB) oligomer hydrolases of W. eutropha H16. The enzyme degraded artificial amorphous PHB granules and mainly released various 3-hydroxybutyrate oligomers. PhaZd distributed nearly equally between PHB inclusion bodies and the cytosolic fraction. The amount of PHB was greater in phaZd deletion mutant cells than the wild-type cells under various culture conditions. These results indicate that PhaZd is a novel intracellular PHB depolymerase which participates in the mobilization of PHB in W. eutropha H16 along with other PHB depolymerases.  相似文献   

9.
Elementary mode analysis has been used to study a metabolic pathway model of a recombinant Saccharomyces cerevisiae system that was genetically engineered to produce the bacterial storage compound poly-beta-hydroxybutyrate (PHB). The model includes biochemical reactions from the intermediary metabolism and takes into account cellular compartmentalization as well as the reversibility/irreversibility of the reactions. The reaction network connects the production and/or consumption of eight external metabolites including glucose, acetate, glycerol, ethanol, PHB, CO(2), succinate, and adenosine triphosphate (ATP). Elementary mode analysis of the wild-type S. cerevisiae system reveals 241 unique reaction combinations that balance the eight external metabolites. When the recombinant PHB pathway is included, and when the reaction model is altered to simulate the experimental conditions when PHB accumulates, the analysis reveals 20 unique elementary modes. Of these 20 modes, 7 produce PHB with the optimal mode having a theoretical PHB carbon yield of 0.67. Elementary mode analysis was also used to analyze the possible effects of biochemical network modifications and altered culturing conditions. When the natively absent ATP citrate-lyase activity is added to the recombinant reaction network, the number of unique modes increases from 20 to 496, with 314 of these modes producing PHB. With this topological modification, the maximum theoretical PHB carbon yield increases from 0.67 to 0.83. Adding a transhydrogenase reaction to the model also improves the theoretical conversion of substrate into PHB. The recombinant system with the transhydrogenase reaction but without the ATP citrate-lyase reaction has an increase in PHB carbon yield from 0.67 to 0.71. When the model includes both the ATP citrate-lyase reaction and the transhydrogenase reaction, the maximum theoretical carbon yield increases to 0.84. The reaction model was also used to explore the possibility of producing PHB under anaerobic conditions. In the absence of oxygen, the recombinant reaction network possesses two elementary modes capable of producing PHB. Interestingly, both modes also produce ethanol. Elementary mode analysis provides a means of deconstructing complex metabolic networks into their basic functional units. This information can be used for analyzing existing pathways and for the rational design of further modifications that could improve the system's conversion of substrate into product.  相似文献   

10.
Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.  相似文献   

11.
Organisms isolated from activated sludge and identified as Zoogloea ramigera accumulated large amounts of sudanophilic granules as the cultures flocculated. The granules were extracted by chloroform and precipitated with ether from acid-hydrolyzed cells. Identification of the sudanophilic granules as poly-β-hydroxybutyric acid (PHB) was confirmed by physical, chemical, and infrared spectral analyses. The isolated polymer accounted for 12.0 to 50.5% of the dry weight of the cells. The polymer was not synthesized when the culture was grown in a growth-limiting concentration of organic substrate; it did accumulate when the culture was grown in medium enriched with carbon and energy sources. An increase in concentration of intracellular PHB was directly proportional to optical density and uptake of glucose. Aside from intracellular storage of PHB as endogenous metabolite, the accumulation of PHB is noted as a possible mechanism of flocculation.  相似文献   

12.
13.
M.V. MARTINEZ-TOLEDO, J. GONZALEZ-LOPEZ, B. RODELAS, C. POZO AND V. SALMERON. 1995. Azotobacter chroococcum H23 is able to produce large amounts of poly-β-hydroxybutyrate (PHB) during growth in chemically-defined medium (N-free or with NH+4) and alpechin (wastewater from olive oil mills) medium. Polymer production was not dependent of the nutrient limitation. Strain H23 was capable of accumulating PHB up to 70% of the cell dry weight after 24 h incubation in chemically-defined media containing 1% glucose, fructose, mannitol, saccharose or starch. Azotobacter chroococcum grown on NH+4-medium supplemented with alpechin formed PHB up to 50% of the cell dry weight after 24 h, suggesting that these wastes could be utilized by Azotobacter as a cheap substrate for producing PHB.  相似文献   

14.
Endogenous metabolism of Azotobacter agilis   总被引:7,自引:4,他引:3  
Sobek, J. M. (University of Southwestern Louisiana, Lafayette), J. F. Charba, and W. N. Foust. Endogenous metabolism of Azotobacter agilis. J. Bacteriol. 92:687-695. 1966-Ribonucleic acid, deoxyribonucleic acid, cellular carbohydrate, and the cold trichloroacetic acid and acidic alcohol fractions of the cell do not appear to function as endogenous reserves for Azotobacter agilis. The immediate endogenous reserve of cells grown on glucose, acetate, or succinate was poly-beta-hydroxybutyric acid (PHB). Viability of the cells during starvation was dependent upon the initial levels of PHB and the growth substrate. Cells with high initial PHB levels survived longer than cells with lower levels. Cells from succinate-grown cultures had lower PHB levels than cells from glucose-grown cultures, but were capable of maintaining their viability longer. Cellular protein may also serve as a secondary endogenous reserve substrate for this organism.  相似文献   

15.
Brita  Nyman 《Physiologia plantarum》1969,22(5):888-898
Nonanal (80 μ) in ethanolic solution stimulated the growth of Dipodascus aggregatus with fructose (55.5 mM) as carbon source (inoculum grown with fructose or glucose). If the inoculum had been grown with galactose, neither growth with galactose nor growth with glucose was affected by nonanal. If the inoculum had been grown with glucose, growth with galactose was weakly. stimulated. —Growth with galactose (galactose-grown inoculum) was strongly stimulated by nonanal if xylose at a low concentration (0.53 mM) was added. — The oxygen uptake of glucose grown cells with glucose as substrate was stimulated by 200 μM nonanal in the absence of ethanol. The respiratory activity of galactose-grown cells was also stimulated with galactose as well as with glucose as substrate. In the absence of exogenous substrate the oxygen uptake of glucose-grown cells was weakly stimulated by nonanal whereas that of galactose-grown cells was strongly stimulated.  相似文献   

16.
Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-β-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.  相似文献   

17.
Polyhydroxybutyrate (PHB) is a naturally occurring bacterial polymer that can be used as a biodegradable replacement for some petrochemical‐derived plastics. Polyhydroxybutyrate is produced commercially by fermentation, but to reduce production costs, efforts are underway to produce it in engineered plants, including sugarcane. However, PHB levels in this high‐biomass crop are not yet commercially viable. Chemical ripening with herbicides is a strategy used to enhance sucrose production in sugarcane and was investigated here as a tool to increase PHB production. Class A herbicides inhibit ACCase activity and thus reduce fatty acid biosynthesis, with which PHB production competes directly for substrate. Treatment of PHB‐producing transgenic sugarcane plants with 100 μm of the class A herbicide fluazifop resulted in a fourfold increase in PHB content in the leaves, which peaked ten days post‐treatment. The minimum effective concentration of herbicide required to maximize PHB production was 30 μm for fluazifop and 70 μm for butroxydim when applied to saturation. Application of a range of class A herbicides from the DIM and FOP groups consistently resulted in increased PHB yields, particularly in immature leaf tissue. Butroxydim or fluazifop treatment of mature transgenic sugarcane grown under glasshouse conditions increased the total leaf biomass yield of PHB by 50%–60%. Application of an ACCase inhibitor in the form of a class A herbicide to mature sugarcane plants prior to harvest is a promising strategy for improving overall PHB yield. Further testing is required on field‐grown transgenic sugarcane to more precisely determine the effectiveness of this strategy.  相似文献   

18.
This paper discusses the poly-beta-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth-order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.  相似文献   

19.
Ilyobacter delafieldii produced an extracellular poly--hydroxybutyrate (PHB) depolymerase when grown on PHB; activity was not detected in cultures grown on 3-hydroxybutyrate, crotonate, pyruvate or lactate. PHB depolymerase activity was largely associated with the PHB granules (supplied as growth substrate), and only 16% was detected free in the culture supernatant. Monomeric 3-hydroxybutyrate was detectable as a product of depolymerase activity. The monomer was fermented to acetate, butyrate and H2. After activation by coenzyme A transfer from acetyl-CoA or butyryl-CoA, the resultant 3-hydroxybutyryl-CoA was oxidized to acetoacetyl-CoA (producing NADH), followed by thiolytic cleavage to yield acetyl-CoA which was further metabolized to acetyl-phosphate, then to acetate with concomitant ATP production. The reducing equivalents (NADH) could be disposed of by the evolution of H2, or by a reductive pathway in which 3-hydroxybutyryl-CoA was dehydrated to crotonyl-CoA and reduced to butyryl-CoA. In cocultures ofI. delafieldii withDesulfovibrio vulgaris on PHB, the H2 partial pressure was much lower than in the pure cultures, and sulfide was produced. Thus interspecies hydrogen transfer caused a shift to increased acetate and H2 production at the expense of butyrate.  相似文献   

20.
刘双江 《微生物学报》2004,44(1):111-114
建立了一种分离纯化聚羟基丁酸(Polyhydroxybutyrate,PHB)颗粒的改良方法。采用这种方法从Ralstonia eutropha菌株H16(野生型)、SK1489(Tn5诱变的PHB泄漏菌株)、JMP222(野生的PHB泄漏菌株)分离了PHB颗粒。进一步比较研究了不同菌株的PHB解聚酶和3-羟基丁酸脱氢酶的活性。研究结果表明,菌株SK1489的PHB解聚酶活性(48h培养后达1.82U/mg)明显高于野生型菌株H16(48h培养后达0.37U/mg),菌株JMP222的3-羟基丁酸脱氢酶活性(培养96h后达165.9U/mg)比菌株H16培养(96h后达64.0U/mg)高许多。这些结果显示,不同菌株PHB的泄漏有不同的原因,突变株SK1489导致PHB泄漏的原因是解聚酶活性高,而野生型JMP222PHB泄漏的原因主要是3-羟基丁酸脱氢酶活性高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号