首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A marine yellowish picoplankton, strain PP301, which was newly isolated from the surface seawater of the western Pacific Ocean was an eminent producer of polyunsaturated fatty acids. Its fatty acids were mostly shared by the shortest saturated form (14:0, 20–30%) and polyunsaturated forms (20:4, EPA and DHA) which accounted for about 50% of the total fatty acids. The amount of intermediate forms in 16 and 18 carbon chains were very little. This composition was consistently observed irrespective of the growth temperatures (15–35 °C).  相似文献   

2.
An investigation of live or freshly prepared feeds used as maturationdiets for freshwater ornamental fish was conducted to uncover similaritiesor differences in total and essential fatty acids. Analysis of these maturation feeds reveals that there are relatively low levels of totalfatty acids (0.81–8.96 mg/100 mg–1 dry weight) and withthe exception of the beef heart diet all other feeds have undetectablelevels of docosahexaenoate (22:6n3). The beef heart diet was observed topossess 4.86 mg 100 mg–1 dry weight of 22:6n3 most probablydue to the addition of skipjack tuna, Katsuwanus pelamis, roe. All otherfeeds examined were found to contain low to moderate levels ofeicosapentaenoate (20:5n3) 0.00–0.61 mg/100 mg–1 dryweight. Surprisingly relatively high amounts of arachidonate (20:4n6)0.16–0.90 mg/100 mg–1 dry weight were observed in all ofthe maturation diets and ranged between 3.79%–27.16% ona percent composition basis. The results obtained to date indicate a need toscrutinize the role of arachidonate in the maturation and spawningprocess.  相似文献   

3.
1. Marked differences were observed in the total fatty acid concentrations and essential fatty acid (EFA) distributions of co-existing freshwater copepods and cladocerans in four large lake systems (lakes Michigan, Erie, Ontario and Champlain) over two growing seasons. These patterns appeared independent of lake seston EFA composition.
2. Compared to the cladocerans, calanoid and cyclopoid copepods contained significantly higher concentrations of total fatty acids and docosahexaenoic acid (DHA), an EFA abundant in fish. Calanoids and cladocerans contained similar levels of eicosapentaenoic acid (EPA), but cladocerans showed EPA : DHA ratios consistently greater than those of the available seston food source. Alpha-linolenic acid was most abundant in the herbivorous cladocerans, Daphnia and Holopedium , while the highest concentrations of arachidonic acid were found in the predatory cladocerans, Bythotrephes longimanus and Leptodora kindtii .
3. The distinct EFA accumulation patterns between cladoceran and copepod zooplankton suggest metabolic regulation of certain EFAs to meet the particular physiological demands and ecological strategies of these different zooplankton groups. Cladocerans may accumulate EPA directly from their diet, or through transformation of dietary materials to facilitate rapid somatic growth and enhance reproduction due to their short generation time. In contrast, copepods may retain DHA to increase their cell membrane fluidity in order to remain active over the winter due to their longer generation time and life cycle.
4. Consistent EFA differences between zooplankton groups may have implications regarding the somatic growth and reproductive success of different zooplankton taxa as well as the nutritional value of various zooplankton groups for larval and planktivorous fish.  相似文献   

4.
Fifty samples of freshwater fish, representing eight tropical species, were collected from Ethiopian Rift Valley lakes in order to study the variation of lipids and fatty acids (FA) both within and between species. Most specimens (36 samples) were low in fat, ≥5% of dry weight (dw). Medium- (nine samples) and high-fat fish (five samples) contained ≤6% and >10% dw, respectively. The extent of variation was more pronounced in the herbivore Oreochromis niloticus than in the omnivorous (e.g. Barbus sp.) or carnivorous–piscivorous ( Clarias gariepinus ) fishes. Twenty-eight FA of various chain lengths and saturation levels were identified. Most FA were unsaturated and long-chained. The major individual FA were palmitic acid (16:0), stearic acid (18 : 0), oleic acid (18 : 1ω9) and docosahexaenoic acid (DHA) (22 : 6ω3). The ω3/ω6 ratio varied considerably (1·1–7·6) and O. niloticus from Lake Haiq was found to be superior in lipid quality to all the tropical fish species considered in this study. The data show that tropical freshwater fish are comparable to temperate freshwater fish as sources of polyunsaturated FA.  相似文献   

5.
There is a growing number of animal models and clinical trials of n-3 polyunsaturated fatty acid (PUFAs) supplementation in disease. Epidemiologic and biochemical studies have suggested beneficial effects of n-3 PUFAs. But also, the use of n-3 PUFAs has some potential toxicological risks that can be circumvented by careless processing, storing, and preserving the PUFAs. The use of n-3 PUFAs is safe if appropriate preparations and dosages are selected. Much research is needed to clarify their use under different disease conditions. The newly established clinical and nutritional facts on n-3 PUFAs will induce industry to develop food products based on this knowledge.  相似文献   

6.
Depression may be associated with impaired membrane PUFA composition, especially decreased n-3 PUFA. This assumption has not been tested at the level of brain tissue. Moreover, most studies were confounded by dietary variability. We examined the FA composition of selected brain areas in an animal model of depression, the Flinders Sensitive Line (FSL) rat, and compared the findings with those in controls fed identical diets. In all brain regions studied, the concentration of arachidonic acid (AA) was significantly higher in the FSL rats: in the hypothalamus by 21%, in the nucleus accumbens by 24%, in the prefrontal cortex by 31%, and in the striatum by 23%. No significant differences were observed for n-3 PUFA or for the saturated and monounsaturated FAs. Our results confirm the existence of altered brain PUFA composition in an animal model of depression. The finding of increased AA, an n-6 PUFA, rather than decreased n-3 PUFA, emphasizes the importance of both PUFA families in the pathophysiological processes underlying depression. The FSL rat is a useful tool for further elucidation of the FA disturbances in depression.  相似文献   

7.
8.
Very long-chain polyunsaturated fatty acids (VLCPUFAs) are essential for human health and well-being. However, the current sources of these valuable compounds are limited and may not be sustainable in the long term. Recently, considerable progress has been made in identifying genes involved in the biosynthesis of VLCPUFAs. The co-expression of these genes in model systems such as plant embryos or yeast provided many valuable insights into the mechanisms of VLCPUFA synthesis. The recent successful reconstitution of pathways leading to the synthesis of arachidonic acid, eicosapentaenoic acid and finally docosahexaenoic acid in oil-seed plants indicates the feasibility of using transgenic crops as alternative sources of VLCPUFAs. The various approaches used to attain these results and the specific constraints associated with each approach are discussed.  相似文献   

9.
The efficacy of ω3 fatty acid ethyl esters was evaluated in 10 mildly hypertriglyceridemic patients in this randomized, placebo-controlled, double-blind, crossover trial. Patients were given capsules (1 per 10 kg body weight) containing 640 mg/g of ω3 fatty acids or an olive oil placebo for two 4-week treatment periods separated by a 1-week washout phase. Plasma lipids, lipoproteins, and apolipoproteins: phospholipid FA composition; the susceptibility to oxidation of the apolipoprotein B-100 containing lipoproteins; and bleeding times were determined at the end of each period. Plasma triglyceride levels were reduced by 37% (P < 0.001), whereas low density lipoprotein cholesterol and the cholesterol content of subfraction 2 of high density lipoproteins increased by 23 and 56%, respectively (both P < 0.02). Changes in plasma lipid parameters and in phospholipid FA patterns occurred rapidly, usually stabilizing within 1 week, and returned to baseline levels within 10 days after stopping supplementation with ω3 fatty acids. Bleeding times were not changed. However, the susceptibility of lipoproteins to oxidation was increased during the ω3 fatty acid period. We conclude that ω3 fatty acid ethyl esters are effective hypotriglyceridemic agents, and that they impact lipoprotein metabolism very quickly. How they may alter the atherogenic process is not clear from this study because some risk factors worsened and other improved.  相似文献   

10.
The composition of hydrocarbons, fatty acids, and of total, polar, and neutral lipids was studied in freshwater Potamogetonaceae grasses collected in two different regions of the Volga river. More than 40 fatty acids and hydrocarbons were separated and identified by chromato-mass spectrometry. The variability of lipid characteristics of plants of the same family is discussed.  相似文献   

11.
UV-B irradiation reduced the levels of omega-3 fatty acid, eicosapentaenoic acid (EPA, 20:53) and docosahexaenoic acid (DHA, 22:63), in microalgae; the degree of reduction varied with species.Chaetoceros calcitrans andSkeletonema costatum were high UV-B tolerant species, followed byPhaeodactylum tricornutum, Chroomonas salina, Pavlova lutheri, andThalassiosira pseudonana.Isochrysis galbana (T.ISO) andProrocentrum micans were UV- B sensitive. Cells in logarithmic phase were most sensitive to UV- B irradiation. Nitrate-, phosphate-, or sulphate-starved cells were more UV-B sensitive than non-starved cells grown in a complete basal medium. A relatively short exposure to high UV-B was more damaging than a longer exposure to lower irradiance. Visible light intensity levels had a profound impact on the sensitivity of microalgal cultures to UV-B, with high levels decreasing UV-B dependent damage. Addition of polyamines (putrescine, spermidine or spermine) or an amino acid (cysteine) to the culture medium minimized the reduction of omega-3 fatty acid content in microalgae caused by UV-B irradiation.Author for correspondence  相似文献   

12.
In order to find new sources of arachidonic (AA) and eicosapentaenoic (EPA) acids, the composition of fatty acids was studied and lipid concentrations were determined in the thalluses of 32 species of red algae from Peter the Great Bay, Sea of Japan. The greatest level of EPA and a small concentration of AA were registered in the thalluses of Corallina pilulifera, Palmaria stenogona, Halosaccion yendoi, and Laurencia nipponica. Taking into consideration the level of the lipid concentrations in the algae, as well as their biomass and frequency of occurrence, the algae C. pilulifera, P. stenogona, L. nipponica, and Polysiphonia morrowii may be of interest as potential sources of EPA. Among the examined algae, only Gracilaria verrucosa showed a high level of AA.  相似文献   

13.
Fitness of aquatic animals can be limited by the scarcity of nutrients such as long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (DHA). DHA availability from diet varies among aquatic habitats, imposing different selective pressures on resident animals to optimize DHA acquisition and synthesis. For example, DHA is generally poor in freshwater ecosystems compared to marine ecosystems. Our previous work revealed that, relative to marine fishes, several freshwater fishes evolved higher copy numbers of the fatty acid desaturase2 (Fads2) gene, which encodes essential enzymes for DHA biosynthesis, likely compensating for the limited availability of DHA in freshwater. Here, we demonstrate that Fads2 copy number also varies between freshwater sticklebacks inhabiting lakes and streams with stream fish having higher Fads2 copy number. Additionally, populations with benthic-like morphology possessed higher Fads2 copy number than those with planktivore-like morphology. This may be because benthic-like fish mainly feed on DHA-deficient prey such as macroinvertebrates whereas planktivore-like fish forage more regularly on DHA-rich prey, like copepods. Our results suggest that Fads2 copy number variation arises from ecological divergence not only between organisms exploiting marine and freshwater habitats but also between freshwater organisms exploiting divergent resources.  相似文献   

14.
Heart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF. This raised several questions regarding ω3-concentration-dependent cardioprotection, the specific role of EPA and DHA, and the relationship between prevention of fibrosis and contractile dysfunction. To achieve more clinically relevant ω3-levels and test individual ω3-PUFAs, we shortened the ω3-diet regimen and used EPA- and DHA-specific diets to examine remodeling following TAC. The shorter diet regimen produced ω3-PUFA levels closer to Western clinics. Further, EPA, but not DHA, prevented fibrosis following TAC. However, neither ω3-PUFA prevented contractile dysfunction, perhaps due to reduced uptake of ω3-PUFA. Interestingly, EPA did not accumulate in cardiac fibroblasts. However, FFA receptor 4, a G protein-coupled receptor for ω3-PUFAs, was sufficient and required to block transforming growth factor β1-fibrotic signaling in cultured cardiac fibroblasts, suggesting a novel mechanism for EPA. In summary, EPA-mediated prevention of fibrosis could represent a novel therapy for HFpEF.  相似文献   

15.
Phytoplankton are the main source of energy and omega‐3 (n‐3) long‐chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n‐3 long‐chain polyunsaturated FA (LC‐PUFA) and an increase in omega‐6 FA and saturated FA. Based on linear regression models, we predict that global n‐3 LC‐PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n‐3 LC‐PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.  相似文献   

16.
Delta-5 and delta-6 desaturases (D5D and D6D) are key enzymes in endogenous synthesis of long-chain PUFAs. In this sample of healthy subjects (n = 310), genotypes of single nucleotide polymorphisms (SNPs) rs174537, rs174561, and rs3834458 in the FADS1-FADS2 gene cluster were strongly associated with proportions of LC-PUFAs and desaturase activities estimated in plasma and erythrocytes. Minor allele carriage associated with decreased activities of D5D (FADS1) (5.84 × 10−19P ≤ 4.5 × 10−18) and D6D (FADS2) (6.05 × 10−8P ≤ 4.20 × 10−7) was accompanied by increased substrate and decreased product proportions (0.05 ≤ P ≤ 2.49 × 10−16). The significance of haplotype association with D5D activity (P = 2.19 × 10−17) was comparable to that of single SNPs, but haplotype association with D6D activity (P = 3.39 × 10−28) was much stronger. In a randomized controlled dietary intervention, increasing eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) intake significantly increased D5D (P = 4.0 × 10−9) and decreased D6D activity (P = 9.16 × 10−6) after doses of 0.45, 0.9, and 1.8 g/day for six months. Interaction of rs174537 genotype with treatment was a determinant of D5D activity estimated in plasma (P = 0.05). In conclusion, different sites at the FADS1-FADS2 locus appear to influence D5D and D6D activity, and rs174537 genotype interacts with dietary EPA+DHA to modulate D5D.  相似文献   

17.
Hypoxia is involved in many neuronal and non‐neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non‐neuronal primary cells and non‐neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0‐ and 3.0‐fold for Gln and Glu, respectively) and immortalized cultures (3.5‐ and 8.0‐fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non‐neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia.

  相似文献   


18.
19.
The disposal and more efficient utilization of marine wastes is becoming increasingly serious. A culture media for microorganisms has been prepared from squid internal organs that are rich in polyunsaturated fatty acids (PUFAs). Both freshwater and marine bacteria grew well in this medium and some bacteria accumulated PUFAs in their lipids, suggesting uptake of exogenous PUFAs. Higher PUFA accumulations were observed in Escherichia coli mutant cells defective either in unsaturated fatty acid biosynthesis or fatty acid degradation, or both, compared to those without these mutations. Therefore, PUFA accumulation in cells can be improved by genetic modification of fatty acid metabolism in the bacteria. Squid internal organs would be a good source of medium, not only for marine bacteria but also for freshwater bacteria, and that this process may be advantageous to make efficient use of the fishery wastes and to produce PUFA-containing microbial cells and lipids.  相似文献   

20.
Four samples of freshwater alga Sirodotia (class Rhodophyceae) collected from two distinct streams in the Mahabaleshwar, Satara district (1,732 m a.s.l.) of the Western Ghats of Maharashtra (India) were analysed for their fatty acid content. The presence of 32 fatty acids was revealed, of which 13 were saturated (SFA), 8 were monounsaturated (MUFA) and 11 were polyunsaturated (PUFA) fatty acids. The major finding was the presence of three pharmaceutically and neutraceutically important PUFAs: arachidonic acid (AA), eicosapentanoeic acid (EPA), and docosahexanoiec acid (DHA). The major fatty acids identified were palmitic (16:0), cis-11,14 icodienoic (20:2), behenic (22:0), cis-8,11,14 eicosatrienoic(20:3n6), cis-4,7,10,13,16,19 docosahexanoeic (22:6n3), cis-13,16 docosadienoic (22:2), erucic (22:1n9), -5,8,11,14,17 eicosapentaenoic (20:5n3), trichosonoic (23:0), nervonic (24:0), arachidonic (20:4n6), cis-10 pentadecanoic (15:1), cis-11,14,17 eicosatrienoic (20:3n3), and myristic acid (14:0). The total PUFA contents ranged from 31.45 to 40.37%. The fatty acids were characterised by the relatively high abundance of PUFAs, while C20 unsaturated acids were appreciably more abundant than C18 unsaturated acids. This is the first report on fatty acid profiles of the genus Sirodotia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号