首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Understanding the patterns and processes underlying phenotype in a polytypic species provides key insights into microevolutionary mechanisms of diversification. The red‐eyed treefrog, Agalychnis callidryas, exhibits strong regional differentiation in colour pattern, corresponding to five admixed mitochondrial DNA clades. We evaluated spatial diversity patterns across multiple, putative barriers to examine the fine‐scale processes that mediate phenotypic divergence between some regions while maintaining homogeneity between others. Location We examined patterns of phenotypic diversification among 17 sites that span five putative biogeographic barriers in lower Central America (Costa Rica and Panama). Methods We tested the extent to which genetic distance (FST) derived from six multilocus nuclear genotypes covaried with measures of phenotypic distance (leg coloration) within and between biogeographic regions. We used linear regression analyses to determine the role of geographic and genetic factors in structuring spatial patterns of phenotypic diversity. Results The factors that best explained patterns of phenotypic diversity varied among biogeographic regions. We identified one geographic barrier that impeded gene exchange and resulted in concordant phenotypic divergence across the Continental Divide, isolating Caribbean and Pacific populations. Across Caribbean Costa Rican populations, one barrier structured phenotypic but not genetic diversity patterns, indicating a role for selection. In other regions, the putative barriers had no determining effect on either genetic or leg colour structure. Main conclusions The processes mediating the distribution and diversification of colour pattern in this polytypic, wide‐ranging treefrog varied among biogeographic regions. Spatially varying selection combined with the isolating effects of geographic factors probably resulted in the patchy distribution of colour diversity across Costa Rican and Panamanian populations.  相似文献   

2.
At small spatial and temporal scales, genetic differentiation is largely controlled by constraints on gene flow, while genetic diversity across a species' distribution is shaped on longer temporal and spatial scales. We assess the hypothesis that oceanographic transport and other seascape features explain different scales of genetic structure of giant kelp, Macrocystis pyrifera. We followed a hierarchical approach to perform a microsatellite‐based analysis of genetic differentiation in Macrocystis across its distribution in the northeast Pacific. We used seascape genetic approaches to identify large‐scale biogeographic population clusters and investigate whether they could be explained by oceanographic transport and other environmental drivers. We then modelled population genetic differentiation within clusters as a function of oceanographic transport and other environmental factors. Five geographic clusters were identified: Alaska/Canada, central California, continental Santa Barbara, California Channel Islands and mainland southern California/Baja California peninsula. The strongest break occurred between central and southern California, with mainland Santa Barbara sites forming a transition zone between the two. Breaks between clusters corresponded approximately to previously identified biogeographic breaks, but were not solely explained by oceanographic transport. An isolation‐by‐environment (IBE) pattern was observed where the northern and southern Channel Islands clustered together, but not with closer mainland sites, despite the greater distance between them. The strongest environmental association with this IBE pattern was observed with light extinction coefficient, which extends suitable habitat to deeper areas. Within clusters, we found support for previous results showing that oceanographic connectivity plays an important role in the population genetic structure of Macrocystis in the Northern hemisphere.  相似文献   

3.
Despite recent interest in microbial diversity and community structure of lakes across various spatial scales, a global biogeographic distribution pattern and its controlling factors have not been fully disclosed. Here, we compiled and analyzed 88,334,735 environmental 16S rRNA sequences from 431 lakes across a wide range of geographical distance and environmental conditions(in particular, salinity, 0–373.3 gL~(–1)). Our results showed that lake sediments inhabit significantly(ANOVA: P0.001) more diverse microbial communities than lake waters. Non-metric dimensional scaling(NMDS) ordinations indicated that microbial community compositions differed distinctly among sample types(freshwater vs. saline, water vs. sediment) and geographic locations. Mantel and partial Mantel tests showed that microbial community composition in lake water was significantly(P=0.001) correlated with geographic distance, salinity, and pH. Statistical analyses based on neutral community and null models indicated that stochastic processes may play predominant roles in shaping the microbial biogeographic distribution patterns in the studied global lake waters. The dispersal-related stochasticity(e.g., homogenizing dispersal) exhibited a stronger influence on the distribution of microbial community in freshwater lakes than in saline lakes. Overall, this work expands our understanding of the impact of geographic distance, environmental conditions, and stochastic processes on microbial distribution in global lakes.  相似文献   

4.
Aim To test the congruence of phylogeographic patterns and processes between a woodland agamid lizard (Diporiphora australis) and well‐studied Australian wet tropics fauna. Specifically, to determine whether the biogeographic history of D. australis is more consistent with a history of vicariance, which is common in wet tropics fauna, or with a history of dispersal with expansion, which would be expected for species occupying woodland habitats that expanded with the increasingly drier conditions in eastern Australia during the Miocene–Pleistocene. Location North‐eastern Australia. Methods Field‐collected and museum tissue samples from across the entire distribution of D. australis were used to compile a comprehensive phylo‐geographic dataset based on c. 1400 bp of mitochondrial DNA (mtDNA), incorporating the ND2 protein‐coding gene. We used phylogenetic methods to assess biogeographic patterns within D. australis and relaxed molecular clock analyses were conducted to estimate divergence times. Hierarchical Shimodaira–Hasegawa tests were used to test alternative topologies representing vicariant, dispersal and mixed dispersal/vicariant biogeographic hypotheses. Phylogenetic analyses were combined with phylogeographic analyses to gain an insight into the evolutionary processes operating within D. australis. Results Phylogenetic analyses identified six major mtDNA clades within D. australis, with phylogeographic patterns closely matching those seen in many wet tropics taxa. Congruent phylogeographic breaks were observed across the Black Mountain Corridor, Burdekin and St Lawrence Gaps. Divergence amongst clades was found to decrease in a north–south direction, with a trend of increasing population expansion in the south. Main conclusions While phylogeographic patterns in D australis reflect those seen in many rain forest fauna of the wet tropics, the evolutionary processes underlying these patterns appear to be very different. Our results support a history of sequential colonization of D. australis from north to south across major biogeographic barriers from the late Miocene–Pleistocene. These patterns are most likely in response to expanding woodland habitats. Our results strengthen the data available for this iconic region in Australia by exploring the understudied woodland habitats. In addition, our study shows the importance of thorough investigations of not only the biogeographic patterns displayed by species but also the evolutionary processes underlying such patterns.  相似文献   

5.
In parasites that strongly rely on a host for dispersal, geographic barriers that act on the host will simultaneously influence parasite distribution as well. If their association persists over macroevolutionary time it may result in congruent phylogenetic and phylogeographic patterns due to shared geographic histories. Here, we investigated the level of congruent evolutionary history at a regional and global scale in a highly specialised parasite taxon infecting hosts with limited dispersal abilities: the microsporidians Dictyocoela spp. and their amphipod hosts. Dictyocoela can be transmitted both vertically and horizontally and is the most common microsporidian genus occurring in amphipods in Eurasia. However, little is known about its distribution elsewhere. We started by conducting molecular screening to detect microsporidian parasites in endemic amphipod species in New Zealand; based on phylogenetic analyses, we identified nine species‐level microsporidian taxa including six belonging to Dictyocoela. With a distance‐based cophylogenetic analysis at the regional scale, we identified overall congruent phylogenies between Paracalliope, the most common New Zealand freshwater amphipod taxon, and their Dictyocoela parasites. Also, hosts and parasites showed similar phylogeographic patterns suggesting shared biogeographic histories. Similarly, at a global scale, phylogenies of amphipod hosts and their Dictyocoela parasites showed broadly congruent phylogenies. The observed patterns may have resulted from covicariance and/or codispersal, suggesting that the intimate association between amphipods and Dictyocoela may have persisted over macroevolutionary time. We highlight that shared biogeographic histories could play a role in the codiversification of hosts and parasites at a macroevolutionary scale.  相似文献   

6.
Understanding the role of dispersal and adaptation in the evolutionary history of marine species is essential for predicting their response to changing conditions. We analyzed patterns of genetic differentiation in the key tropical calcifying species of large benthic foraminifera Amphistegina lobifera to reveal the evolutionary processes responsible for its biogeographic distribution. We collected specimens from 16 sites encompassing the entire range of the species and analyzed hypervariable fragments of the 18S SSU rDNA marker. We identified six hierarchically organized genotypes with mutually exclusive distribution organized along a longitudinal gradient. The distribution is consistent with diversification occurring in the Indo‐West Pacific (IWP) followed by dispersal toward the periphery. This pattern can be explained by: (a) high dispersal capacity of the species, (b) habitat heterogeneity driving more recent differentiation in the IWP, and (c) ecological‐scale processes such as niche incumbency reinforcing patterns of genotype mutual exclusion. The dispersal potential of this species drives the ongoing range expansion into the Mediterranean Sea, indicating that A. lobifera is able to expand its distribution by tracking increases in temperature. The genetic structure reveals recent diversification and high rate of extinction in the evolutionary history of the clade suggesting a high turnover rate of the diversity at the cryptic level. This diversification dynamic combined with high dispersal potential, allowed the species to maintain a widespread distribution over periods of geological and climatic upheaval. These characteristics are likely to allow the species to modify its geographic range in response to ongoing global warming without requiring genetic differentiation.  相似文献   

7.
Peridinium cinctum is a common freshwater dinophyte with a long history of research. Erich Lindemann was the first to assess intraspecific variability in this species focusing on plate pattern variation. Since then, this issue has been neglected but with the application of DNA sequence diagnostics, a combination of morphological and molecular characters may enable taxonomic delimitations. Our aim was to identify distinct morphotypes using plate pattern as the main characteristic and then compare them to the geographic occurrence of particular ribotypes (as inferred from sequences of the Internal Transcribed Spacer: ITS) in samples from Central Europe. Approximately 200 observations were carried out under the inverse light microscope for each of a total of 15 strains. We observed two main variations from the abundant plate pattern in P. cinctum, namely an unusual position of the 2a plate and the irregular shape of the 1a plate. In 88 (predominantly clonal) strains, we identified five different ribotypes (submitted as 71 new GenBank entries) which had no clear correlation to the defined morphotypes and/or spatial occurrences. In four cases, we detected two distinct ribotypes at the same locality. However, samples collected south of the Danube River presented a different predominant morphotype from the rest of the samples, thus implying a potential biogeographic signal as inferred from morphology. In general, there is morphological and molecular variability in P. cinctum, which is under-studied and which may uncover geographic or ecological correlations or even the existence of cryptic species.  相似文献   

8.
Integrating phylogenetic data into macroecological studies of biodiversity patterns may complement the information provided by present‐day spatial patterns. In the present study, we used range map data for all Geonoma (Arecaceae) species to assess whether Geonoma species composition forms spatially coherent floristic clusters. We then evaluated the extent to which the spatial variation in species composition reflects present‐day environmental variation vs. nonenvironmental spatial effects, as expected if the pattern reflects historical biogeography. We also examined the degree of geographic structure in the Geonoma phylogeny. Finally, we used a dated phylogeny to assess whether species richness within the floristic clusters was constrained by a specific historical biogeographic driver, namely time‐for‐diversification. A cluster analysis identified six spatially coherent floristic clusters, four of which were used to reveal a significant geographic phylogenetic structure. Variation partitioning analysis showed that 56 percent of the variation in species composition could be explained by spatial variables alone, consistent with historical factors having played a major role in generating the Geonoma diversity pattern. To test for a time‐for‐diversification effect, we correlated four different species richness measures with the diversification time of the earliest large lineage that is characteristic of each cluster. In support of this hypothesis, we found that geographic areas with higher richness contained older radiations. We conclude that current geographic diversity patterns in Geonoma reflect the present‐day climate, but to a larger extent are related to nonenvironmental spatial constraints linked to colonization time, dispersal limitation, and geological history, followed by within‐area evolutionary diversification. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

9.
Mitochondrial DNA (mtDNA) sequencing has led to an unprecedented rise in the identification of cryptic species. However, it is widely acknowledged that nuclear DNA (nuDNA) sequence data are also necessary to properly define species boundaries. Next generation sequencing techniques provide a wealth of nuclear genomic data, which can be used to ascertain both the evolutionary history and taxonomic status of putative cryptic species. Here, we focus on the intriguing case of the butterfly Thymelicus sylvestris (Lepidoptera: Hesperiidae). We identified six deeply diverged mitochondrial lineages; three distributed all across Europe and found in sympatry, suggesting a potential case of cryptic species. We then sequenced these six lineages using double‐digest restriction‐site associated DNA sequencing (ddRADseq). Nuclear genomic loci contradicted mtDNA patterns and genotypes generally clustered according to geography, i.e., a pattern expected under the assumption of postglacial recolonization from different refugia. Further analyses indicated that this strong mtDNA/nuDNA discrepancy cannot be explained by incomplete lineage sorting, sex‐biased asymmetries, NUMTs, natural selection, introgression or Wolbachia‐mediated genetic sweeps. We suggest that this mitonuclear discordance was caused by long periods of geographic isolation followed by range expansions, homogenizing the nuclear but not the mitochondrial genome. These results highlight T. sylvestris as a potential case of multiple despeciation and/or lineage fusion events. We finally argue, since mtDNA and nuDNA do not necessarily follow the same mechanisms of evolution, their respective evolutionary history reflects complementary aspects of past demographic and biogeographic events.  相似文献   

10.
Blue sheep, Pseudois nayaur, is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest‐elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis. However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois. Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.  相似文献   

11.
Anurans are a highly diverse group in the Atlantic Forest hotspot (AF), yet distribution patterns and species richness gradients are not randomly distributed throughout the biome. Thus, we explore how anuran species are distributed in this complex and biodiverse hotspot, and hypothesize that this group can be distinguished by different cohesive regions. We used range maps of 497 species to obtain a presence/absence data grid, resolved to 50×50 km grain size, which was submitted to k-means clustering with v-fold cross-validation to determine the biogeographic regions. We also explored the extent to which current environmental variables, topography, and floristic structure of the AF are expected to identify the cluster patterns recognized by the k-means clustering. The biogeographic patterns found for amphibians are broadly congruent with ecoregions identified in the AF, but their edges, and sometimes the whole extent of some clusters, present much less resolved pattern compared to previous classification. We also identified that climate, topography, and vegetation structure of the AF explained a high percentage of variance of the cluster patterns identified, but the magnitude of the regression coefficients shifted regarding their importance in explaining the variance for each cluster. Specifically, we propose that the anuran fauna of the AF can be split into four biogeographic regions: a) less diverse and widely-ranged species that predominantly occur in the inland semideciduous forests; b) northern small-ranged species that presumably evolved within the Pleistocene forest refugia; c) highly diverse and small-ranged species from the southeastern Brazilian mountain chain and its adjacent semideciduous forest; and d) southern species from the Araucaria forest. Finally, the high congruence among the cluster patterns and previous eco-regions identified for the AF suggests that preserving the underlying habitat structure helps to preserve the historical and ecological signals that underlie the geographic distribution of AF anurans.  相似文献   

12.
We compared the distributions of Alouatta palliata and A. pigra in southeastern Mexico and Central America with geographic and ecological features to infer current barriers and ecological preferences. Distribution data were obtained from museum specimen localities, study sites, historic records and field surveys and integrated into digital elevation and ecosystem maps using GIS. A. pigra evidently occurs at a number of sites above 2,000 m, where temperatures can even drop below zero on some days of the year, thus indicating a broader ecological tolerance than previously reported. Both species occupy a number of vegetation types and can be found in seasonal and nonseasonal forests. We identified the highland massif of northern Central America and its associated coniferous and subalpine vegetation as a geographic barrier that separates the species. In the past, distribution maps for these species have indicated adjacent contiguous ranges, but we propose that they are largely separated by these mountains. There are two contact zones: a broad area of sympatry north of the highland massif in Mexico and a narrow zone in eastern Guatemala where parapatry is maintained by a river barrier and where only A. pigra occurs in the high elevations and cooler habitats inland. We explore an alternative biogeographic scenario for the split of the two species that accounts for the current distribution and differences in elevation and cold tolerances. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.

Aim

To evaluate Morrone's (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) Neotropical regionalization by testing the prediction that biotas are more homogeneous within than among biogeographic units.

Location

Neotropics.

Methods

We conducted pairwise comparisons of beta diversity of Sapotaceae species within and between biogeographic units in the hierarchical regionalization proposed by Morrone (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)), at a spatial resolution of 1‐degree cells. We used a null model to control differences in sampling effort across 1‐degree cells and performed beta‐diversity comparisons conditional on geographic distance to control for distance decay of biotic similarity.

Results

None of the biogeographic units proposed by Morrone (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) was biotically homogeneous with respect to all other units at the same hierarchical level. This was the case even for units commonly reported to be isolated and to host distinctive taxa like “Choco.” However, five of 45 biogeographic units were biotically homogenous relative to several other units. These units were “Cuba,” “Chaco,” “Varzea,” “Cauca” and “Costa Pacífica Mexicana.” Also, beta diversity within units was often lower than beta diversity between units at relatively short geographic distances.

Main conclusions

The distribution of Sapotaceae species showed generally low biotic homogeneity within Morrone's (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) biogeographic units and did not support his biogeographic regionalization. This result suggests a strong role for dispersal and biotic interchange among biogeographic units and across barriers like the Andes. It also casts doubt on the usefulness of Morrone's (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) biogeographic units as tools for the identification of priority areas for the conservation of biodiversity. However, relatively high biotic homogeneity within some biogeographic units suggests that they capture significant spatial patterns. In particular, noteworthy biotic homogeneity within “Cuba,” “Cauca” and “Costa Pacifica Mexicana” could be explained by isolation. Also, in “Costa Pacifica Mexicana,” patterns of biotic homogeneity could reflect closer affinities to humid lowland montane forest in Central America than to lowland rain forest in South America. Finally, substantial biotic homogeneity within “Varzea” could result from common adaptation to edaphic environments near the Amazon River.
  相似文献   

14.
Concordance between the mitochondrial haplotypes of the Eastern honey bee, Apis cerana, and its ectoparasitic Varroa mites across the Isthmus of Kra in Thailand has suggested that local host–pathogen co-evolution may be responsible for the geographic distribution of particular genotypes. To investigate nuclear microsatellites population structure in A. cerana, single workers of A. cerana colonies from Thailand were genotyped at 18 microsatellite loci. The loci showed intermediate to high levels of heterozygosity and a range of allele numbers. The analyses confirmed a fundamental subdivision of the Thai A. cerana population into the “Asia Mainland” and “Sundaland” regions at the Isthmus of Kra. However, the nuclear microsatellite differentiation was less distinct than mtDNA haplotype differences, suggesting male-biased dispersal and population admixture. Overall, samples showed a weak isolation-by-distance effect. The isolated population on Samui island was most differentiated from the other samples. The results do not support our initial hypothesis of local host–pathogen co-evolution, which predicts a strict correspondence between the nuclear genome and the lineage of parasitic Varroa mite of the A. cerana samples, because the gene flow indicated by our nuclear microsatellite markers should also mix potential Varroa resistance alleles among subpopulations. Instead, our study suggests that the coincidental distribution of Varroa lineages and A. cerana population structure in Thailand are the result of biogeographic history and current migration patterns.  相似文献   

15.
Distribution of Acremonium endophytes in several species of Agrostideae is determined through surveys conducted in the field and in grass herbaria. Widespread geographic distribution of Acremonium in a particular grass species may indicate early colonization of the grass as a host, while a narrow pattern of geographic distribution suggests more recent colonization of the grass. Two grasses that appear to show a narrow endophyte distribution include Agrostis alba and Ammophila breviligulata. Cultural features of endophytes from several grasses are compared. A new variety of Acremonium typhinum is proposed to accommodate the endophyte from A. breviligulata. An endophyte in Agrostis alba is identified as Acremonium starrii. It is also suggested that Acremonium endophytes are spreading in grasses and may be progressively colonizing new hosts.  相似文献   

16.
Restriction-fragment length polymorphisms in mitochondrial DNA (mtDNA) were used to evaluate population-genetic structure and matriarchal phylogeny in four species of marine fishes that lack a pelagic larval stage: the catfishes Arius felis and Bagre marinus, and the toadfishes Opsanus tau and O. beta. Thirteen informative restriction enzymes were used to assay mtDNAs from 134 specimens collected from Massachusetts to Louisiana. Considerable genotypic diversity was observed in each species. However, major mtDNA phylogenetic assemblages in catfish and toadfish (as identified in Wagner networks and UPGMA phenograms) exhibited contrasting patterns of geographic distribution: in catfish, distinct mtDNA clades were widespread, while such clades in toadfish tended to be geographically localized. By both the criteria of species' ranges and the geographic pattern of intraspecific mtDNA phylogeny, populations of marine catfish in the western Atlantic have had greater historical interconnectedness than have toadfish. Results are also compared to previously published mtDNA data in freshwater and other marine fishes. Although mtDNA differentiation among conspecific populations of continuously distributed marine fishes is usually lower than that among discontinuously distributed freshwater species inhabiting separate drainages, it is apparent that historical biogeographic factors can importantly influence genetic structure in marine as well as freshwater species.  相似文献   

17.
We analyzed the global genetic variation pattern of Capsella bursa‐pastoris (Brassicaceae) as expressed in allozymic (within‐locus) diversity and isozymic (between‐locus) diversity. Results are based on a global sampling of more than 20,000 C. bursa‐pastoris individuals randomly taken from 1,469 natural provenances in the native and introduced range, covering a broad spectrum of the species’ geographic distribution. We evaluated data for population genetic parameters and F‐statistics, and Mantel tests and AMOVA were performed. Geographical distribution patterns of alleles and multilocus genotypes are shown in maps and tables. Genetic diversity of introduced populations is only moderately reduced in comparison with native populations. Global population structure was analyzed with structure, and the obtained cluster affiliation was tested independently with classification approaches and macroclimatic data using species distribution modeling. Analyses revealed two main clusters: one distributed predominantly in warm arid to semiarid climate regions and the other predominantly in more temperate humid to semihumid climate regions. We observed admixture between the two lineages predominantly in regions with intermediate humidity in both the native and non‐native ranges. The genetically derived clusters are strongly supported in macroclimatic data space. The worldwide distribution patterns of genetic variation in the range of C. bursa‐pastoris can be explained by intensive intra‐ and intercontinental migration, but environmental filtering due to climate preadaption seems also involved. Multiple independent introductions of genotypes from different source regions are obvious. “Endemic” genotypes might be the outcome of admixture or of de novo mutation. We conclude that today's successfully established Capsella genotypes were preadapted and found matching niche conditions in the colonized range parts.  相似文献   

18.
With the advent of molecular methods, it became clear that microbial biodiversity had been vastly underestimated. Since then, species abundance patterns were determined for several environments, but temporal changes in species composition were not studied to the same level of resolution. Using massively parallel sequencing on the 454 GS FLX platform we identified a highly dynamic turnover of the seasonal abundance of protists in the Austrian lake Fuschlsee. We show that seasonal abundance patterns of protists closely match their biogeographic distribution. The stable predominance of few highly abundant taxa, which previously led to the suggestion of a low global protist species richness, is contrasted by a highly dynamic turnover of rare species. We suggest that differential seasonality of rare and abundant protist taxa explains the—so far—conflicting evidence in the ‘everything is everywhere’ dispute. Consequently temporal sampling is basic for adequate diversity and species richness estimates.  相似文献   

19.
20.
Intertidal organisms are often assumed to live close to their thermal limits, and have emerged as potential early indicators of the effects of climate change. We compared our survey of the 2004–2006 geographic distribution of the barnacle Semibalanus balanoides to its distribution in 1872, 1955, 1963, 1971, and 1985, from surveys by Fischer, Crisp, Fischer-Piette, Barnes, Powell, and Southward. The southern geographic limit has retreated 300 km in France since 1872, at a rate of 15 to 50 km per decade. We compared our 2006 survey of the geographic distribution of the polychaete Diopatra neapolitana to its distribution in 1893–1923, from surveys by Saint-Joseph and Fauvel, and its distribution in 1969–1976 from surveys by Glémarec. The northern geographic limit of this species has advanced 300 km in France since 1893 at similar rates to Semibalanus. We used NOAA weather reanalysis data and our mechanistic simulation model of intertidal animal body temperatures to hindcast the thermal environmental change near historical geographic limits in Europe for the past 55 years. Results indicate that changes in the southern limit of S. balanoides are due to intolerance of winter body temperatures above 10°C, leading to reproductive failure. Results for Diopatra are ambiguous: based on the northern extension of its range, either cold winters or cool summers limit its range, while gaps in its distribution are consistent with limitation by cooler summer conditions. The parallel shifts of D. neapolitana on sedimentary shores and Semibalanus on rocky shores suggest that similar climatic factors control the geographic limits of both species. The intertidal zone is a model system for examining the effects of climate change on biogeographic change both because of the rapidity of its response, and because the rich historical record allows direct tests of hypotheses. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号