共查询到12条相似文献,搜索用时 46 毫秒
1.
褪黑素对异丙肾上腺素诱导大鼠tau蛋白过度磷酸化的预防作用 总被引:8,自引:0,他引:8
异常过度磷酸化的微管相关蛋白tau是阿尔茨海默病(Alzheimer's
disease,AD)患者大脑中神经原纤维缠结的主要组成部分.迄今为止,尚无有效的措施阻止tau蛋白的过度磷酸化.为探讨褪黑素(melatonin,Mel)对AD样tau蛋白过度磷酸化的预防作用,我们以β受体激动剂异丙肾上腺素(isoproterenol,IP)来复制AD样tau蛋白过度磷酸化的动物模型,在大鼠双侧海马注射IP前,以褪黑素作为保护组药物,于腹腔连续注射5
d.应用磷酸化位点特异性抗体(PHF-1和Tau-1)作免疫印迹和免疫组织化学检测tau蛋白的磷酸化水平,并用非磷酸化依赖的总tau蛋白抗体(111e)进行标准化.免疫印迹结果显示在注射IP
48 h后,tau蛋白在PHF-1表位的免疫反应显著增强,在Tau-1表位显著减弱,表明tau蛋白在Ser396/Ser404(PHF-1)和Ser199/Ser202(Tau-1)位点有过度磷酸化.免疫组织化学染色结果与免疫印迹结果相似,主要检测到在大鼠海马CA3区的神经纤维有tau蛋白过度磷酸化.褪黑素预处理大鼠可有效地阻止IP诱导tau蛋白在Tau-1和PHF-1位点的过度磷酸化.上述结果提示褪黑素可预防大鼠脑组织中由异丙肾上腺素引起的AD样tau蛋白的过度磷酸化. 相似文献
2.
褪黑素对大鼠海马神经元谷氨酸所致毒性的拮抗作用 总被引:3,自引:0,他引:3
在大鼠海马脑片上电刺激Schaffer 侧支纤维, 胞外记录CA1 区锥体细胞层诱发群体锋电位(population spike,PS) , 观察灌流谷氨酸(Glu) 和褪黑素(MEL) 对PS的影响。结果显示:5-0 mmol/L浓度的Glu 可使PS值下降至对照值的4-1 % ; MEL(0-4 、0-5 和0-6 μmol/L) 与5-0 mmol/LGlu 混合给药,PS值分别变化为对照值的14-7 % 、105-2% 、24-3 % ; MEL(0-5 μmol/L) 、Glu (5-0 mmol/L) , 与赛庚啶(CDP,0-5 μmol/L) 混合给药,PS值下降至0 。上述结果提示,5-0 mmol/L浓度的Glu 有神经毒性作用, 但可为MEL拮抗, 这可能由5HT受体所介导。 相似文献
3.
tau蛋白是神经细胞中主要的微管相关蛋白, 它的异常过度磷酸化被认为是阿尔茨海默病 (AD) 致病过程中的关键因素. 由于法律、社会、家庭等诸多因素使得获取的人脑组织标本常常在死亡后2~3 h以上,因此了解死亡不同时间后tau蛋白磷酸化的改变,对研究tau蛋白的功能及在AD致病过程中作用显得十分重要. 用位点特异的、磷酸化依赖的抗tau蛋白抗体检测正常大鼠脑中tau蛋白磷酸化程度及死亡后其磷酸化的变化情况,再用非同位素的点印迹技术测定鼠脑中tau蛋白激酶、磷酸酶在不同温度下的活性. 结果发现,正常鼠脑中tau蛋白除了Ser262,Ser409,Ser422外,在Thr181,Ser199,Ser202,Thr205,Thr212,Ser214,Thr217,Ser396和Ser404存在不同程度的磷酸化,并且在死亡后3 h,出现tau的多位点的去磷酸化及tau蛋白迁移加快,6 h后更为明显,但tau蛋白水平即使在大鼠死亡后6 h,仍未见有明显的改变. 用点印迹测定蛋白激酶和磷酸酶活性结果显示,tau蛋白激酶、磷酸酶活性均有温度依赖性降低,在25℃时激酶活性降低远大于磷酸酶活性的降低,tau蛋白在死亡后的快速去磷酸化与相对高的磷酸酶作用有关. 相似文献
4.
《Autophagy》2013,9(7):1144-1145
A growing body of research has connected autophagy to neurodegenerative diseases such as Alzheimer disease (AD). In autopsied AD brain, large multivesicular bodies accumulate in neurons. Knockout mice deficient for key autophagy genes demonstrate age-dependent neurodegeneration. Most neurodegenerative diseases are characterized by accumulation of insoluble protein species; the type of protein and the location of aggregates within the nervous system help to define the type of disorder. It has been hypothesized that the inability to degrade such aggregates is a major causative factor in neuronal dysfunction and eventual neuronal death. As neurons are postmitotic and thus cannot regenerate themselves, mechanisms of protein clearance have received much attention in the field. The function of the ubiquitin-proteasome system (UPS) is impaired in models of neurodegeneration, and overexpression of chaperone proteins, such as those in the HSP70 family, leads to beneficial effects in many models of proteinopathies. Recently, studies of the effects of autophagy as a clearance mechanism have uncovered compelling evidence that inducing autophagy can alleviate many pathogenic and behavioral symptoms in animal and cellular models of neurodegeneration. 相似文献
5.
A growing body of research has connected autophagy to neurodegenerative diseases such as Alzheimer disease (AD). In autopsied AD brain, large multivesicular bodies accumulate in neurons. Knockout mice deficient for key autophagy genes demonstrate age-dependent neurodegeneration. Most neurodegenerative diseases are characterized by accumulation of insoluble protein species; the type of protein and the location of aggregates within the nervous system help to define the type of disorder. It has been hypothesized that the inability to degrade such aggregates is a major causative factor in neuronal dysfunction and eventual neuronal death. As neurons are postmitotic and thus cannot regenerate themselves, mechanisms of protein clearance have received much attention in the field. The function of the ubiquitin-proteasome system (UPS) is impaired in models of neurodegeneration, and overexpression of chaperone proteins, such as those in the HSP70 family, leads to beneficial effects in many models of proteinopathies. Recently, studies of the effects of autophagy as a clearance mechanism have uncovered compelling evidence that inducing autophagy can alleviate many pathogenic and behavioral symptoms in animal and cellular models of neurodegeneration. 相似文献
6.
Pritchard SM Dolan PJ Vitkus A Johnson GV 《Journal of cellular and molecular medicine》2011,15(8):1621-1635
It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD. 相似文献
7.
Yang Yu Xiaoqin Run† Zhihou Liang† Yi Li‡ Fei Liu Ying Liu Khalid Iqbal Inge Grundke-Iqbal Cheng-Xin Gong 《Journal of neurochemistry》2009,108(6):1480-1494
Tau is a neuronal microtubule-associated protein. Its hyperphosphorylation plays a critical role in Alzheimer disease (AD). Expression and phosphorylation of tau are regulated developmentally, but its dynamic regulation and the responsible kinases or phosphatases remain elusive. Here, we studied the developmental regulation of tau in rats during development from embryonic day 15 through the age of 24 months. We found that tau expression increased sharply during the embryonic stage and then became relatively stable, whereas tau phosphorylation was much higher in developing brain than in mature brain. However, the extent of tau phosphorylation at seven of the 14 sites studied was much less in developing brain than in AD brain. Tau phosphorylation during development matched the period of active neurite outgrowth in general. Tau phosphorylation at various sites had different topographic distributions. Several tau kinases appeared to regulate tau phosphorylation collectively at overlapping sites, and the decrease of overall tau phosphorylation in adult brain might be due to the higher levels of tau phosphatases in mature brain. These studies provide new insight into the developmental regulation of site-specific tau phosphorylation and identify the likely sites required for the abnormal hyperphosphorylation of tau in AD. 相似文献
8.
蛋白质O-GlcNAc糖基化修饰对tau蛋白磷酸化修饰的影响 总被引:5,自引:1,他引:5
蛋白质的O位N-乙酰葡萄糖胺(O-GlcNAc)糖基化修饰是一种新近发现的广泛存在于细胞核蛋白与细胞浆蛋白的蛋白质翻译后修饰.其性质与经典的膜蛋白和分泌蛋白的糖基化修饰不同,而与蛋白质磷酸化修饰更相似.O-GlcNAc糖基化和磷酸化均修饰tau蛋白的丝氨酸和苏氨酸残基,通过改变O-GlcNAc糖基化供体底物浓度以及其关键酶活性等方法,改变分化后成神经细胞样的PC12细胞中的蛋白质O-GlcNAc糖基化修饰水平,然后用特异性识别不同位点磷酸化的tau蛋白抗体,进行蛋白质印迹分析来检测tau蛋白磷酸化水平的变化.结果发现细胞内蛋白质O-GlcNAc糖基化对tau蛋白磷酸化的影响,在不同的磷酸化位点其影响不同.增加蛋白质O-GlcNAc糖基化修饰导致tau蛋白大多数磷酸位点的磷酸化水平降低,反之亦然.这些结果说明,tau磷酸化在大多数位点受到O-GlcNAc糖基化修饰的负性调节.这一研究为阐明调节tau蛋白磷酸化水平的机理和阿尔茨海默病脑中tau异常过度磷酸化的分子机制提供了新的线索. 相似文献
9.
J. Singh Inge Grundke-Iqbal Brad McDonald Khalid Iqbal 《Molecular and cellular biochemistry》1994,131(2):181-189
Microtubule-associated protein tau from Alzheimer brain has been shown to be phosphorylated at several ser/thr-pro and ser/thr-X sites (Hasegawa, M. et al., J. Biol. Chem, 267, 17047–17054, 1992). Several proline-dependent protein kinases (PDPKs) (MAP kinase, cdc2 kinase, glycogen synthase kinase-3, tubulin-activated protein kinase, and 40 kDa neurofilament kinase) are implicated in the phosphorylation of the ser-thr-pro sites. The identity of the kinase(s) that phosphorylate that ser/thr-X sites are unknown. To identify the latter kinase(s) we have compared the phosphorylation of bovine tau by several brain protein kinases. Stoichiometric phosphorylation of tau was achieved by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, protein kinase C and cyclic AMP-dependent protein kinase, but not with casein kinase-2 or phosphorylase kinase. Casein kinase-1 and calmodulin-dependent protein kinase II were the best tau kinases, with greater than 4 mol and 3 mol32P incorporated, respectively, into each mol of tau. With the sequential addition of these two kinases,32P incorporation approached 6 mol. Peptide mapping revealed that the different kinases largely phosphorylate different sites on tau. After phosphorylation by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, cyclic AMP-dependent protein kinase and casein kinase-2, the mobility of tau isoforms as detected by SDS-PAGE was decreased. Protein kinase C phosphorylation did not produce such a mobility shift. Our results suggest that one or more of the kinases studied here may participate in the hyperphosphorylation of tau in Alzheimer disease. Such phosphorylation may serve to modulate the activaties of other tau kinases such as the PDPKs.Abbreviations PHF
paired helical filaments
- A-kinase
cyclic AMP-dependent protein kinase
- CaM kinase II
calcium/calmodulin-dependent protein kinase II
- C-kinase
calcium-phospholipid-dependent protein kinase
- CK-1
casein kinase-1
- CK-2
casein kinase-2
- Gr kinase
calcium/calmodulin-dependent protein kinase from rat cerebellum
- GSK-3
glycogen synthase kinase-3
- MAP kinase
mitogen-activated protein kinase
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 相似文献
10.
蛋白磷酸酯酶抑制剂冈田酸对人神经母细胞瘤 SK-N-SH细胞系tau蛋白磷酸化水平的影响 总被引:2,自引:0,他引:2
观察蛋白磷酸酯酶-1和蛋白磷酸酯酶-2A的抑制剂冈田酸(okadaicacid,OA)对人神经母细胞瘤系SK-N-SH细胞tau蛋白磷酸化水平的变化,确定tau蛋白过度磷酸化细胞模型的合适剂量和时间。用不同剂量OA与SK-N-SH细胞共温育不同时间,用显微镜观察细胞形态变化,用Western印迹法检测磷酸化tau蛋白和非磷酸化tau蛋白在Ser202位点和Ser404位点磷酸化水平的变化。10~160nmol/LOA与SK-N-SH神经细胞温育3~24h,可引起细胞形态损伤呈剂量依赖性和时间依赖性的变化,起效剂量和时间为10nmol/L和3h。10nmol/LOA与SK-N-SH细胞温育6~24h,磷酸化tau蛋白Ser199/Ser202位点和Ser404位点的表达明显增高,非磷酸化tau蛋白Ser202位点和Ser404位点的表达明显降低,总tau蛋白含量无明显变化。OA可以作为很好的研究tau蛋白过度磷酸化的工具药,10nmol/LOA与SK-N-SH神经细胞共温育6h可以作为制备细胞模型的适宜条件。 相似文献
11.
利用酶联免疫吸附法(ELISA)的高特异性和双酶底物循环的高灵敏度,建立了ELISA-双酶底物循环扩增检测法.用传统ELISA测定纯化tau蛋白和阿尔茨海默病异常磷酸化tau蛋白的范围值分别为1~32 ng和0.2~10 ng,而此法的测定范围值分别为0.75~200 pg和0.5~50 pg,比传统ELISA的灵敏度分别提高1 300倍和400倍,可测定范围值亦分别扩大了8.5倍和2倍.可准确测定阿尔茨海默病患者脑脊液样品中的微量tau蛋白和异常磷酸化tau蛋白,为阿尔茨海默病的早期诊断和鉴别诊断提供了新技术. 相似文献
12.
Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation 总被引:1,自引:0,他引:1
Golam Sadik Toshihisa Tanaka Kiyoko Kato Hidenaga Yamamori Begum Nurun Nessa Takashi Morihara Masatoshi Takeda 《Journal of neurochemistry》2009,108(1):33-43
The microtubule associated protein tau is a major component of neurofibrillary tangles in Alzheimer disease brain, however the neuropathological processes behind the formation of neurofibrillary tangles are still unclear. Previously, 14-3-3 proteins were reported to bind with tau. 14-3-3 Proteins usually bind their targets through specific serine/threonine –phosphorylated motifs. Therefore, the interaction of tau with 14-3-3 mediated by phosphorylation was investigated. In this study, we show that the phosphorylation of tau by either protein kinase A (PKA) or protein kinase B (PKB) enhances the binding of tau with 14-3-3 in vitro . The affinity between tau and 14-3-3 is increased 12- to 14-fold by phosphorylation as determined by real time surface plasmon resonance studies. Mutational analyses revealed that Ser214 is critical for the phosphorylation-mediated interaction of tau with 14-3-3. Finally, in vitro aggregation assays demonstrated that phosphorylation by PKA/PKB inhibits the formation of aggregates/filaments of tau induced by 14-3-3. As the phosphorylation at Ser214 is up-regulated in fetal brain, tau's interaction with 14-3-3 may have a significant role in the organization of the microtubule cytoskeleton in development. Also as the phosphorylation at Ser214 is up-regulated in Alzheimer's disease brain, tau's interaction with 14-3-3 might be involved in the pathology of this disease. 相似文献