首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrin-linked kinase (ILK), a multifunctional serine-threonine protein kinase, has been shown to have implications for the treatment of ischemia vascular diseases by promoting angiogenesis in various tissues. However, whether this kinase has therapeutic potential in pre-eclampsia is not well studied. In this report, we determined the changes in the production and action of ILK on endothelial progenitor cells (EPCs) isolated from patients with pre-eclampsia. The effects of ILK transfection on proliferation, migration, and angiogenesis of EPCs were investigated. We showed that EPCs transfected with the ILK gene expressed high levels of ILK protein and mRNA. Transfection with ILK also enhanced the proliferative, migratory, and angiogenic capabilities of EPCs, and promoted the production of VEGF. These results suggest that ILK gene transfection is an effective approach to augment angiogenic properties of EPCs in vitro and providing basis for clinical cell-based gene therapy in patients with pre-eclampsia.  相似文献   

2.
Investigations carried out over the past 3 years have implicated a key role for sphingosine 1-phosphate (SPP) in angiogenesis and blood vessel maturation. SPP is capable of inducing almost every aspect of angiogenesis and vessel maturation in vitro, including endothelial cell chemotaxis, survival, proliferation, capillary morphogenesis and adherence antigen deployment, as well as stabilizing developing endothelial cell monolayers and recruitment of smooth muscle cells to maturing vessels. Acting in conjunction with protein angiogenic factors, SPP induces prolific vascular development in many established models of angiogenesis in vivo. Thus, SPP is a unique, potent and multifaceted angiogenic agent. While SPP induces angiogenic effects by ligating members of the endothelial differentiation gene (EDG) G-protein-coupled family of receptors, recent studies suggest that endogenously produced SPP may also account for the ability of tyrosine kinase receptors to induce cell migration. Thus, SPP provides a clear link between tyrosine kinase and G-protein-coupled receptor agonists involved in the angiogenic response. However, the mechanisms by which SPP exerts its effects on vascular cells remain unclear, conflicting and controversial. Precise definition of the signalling pathways by which SPP induces specific aspects of the angiogenic response promises to lead to new and effective therapeutic approaches to regulate angiogenesis at sites of tissue damage, neoplastic transformation and inflammation. This review will trace the discovery of SPP as a novel angiogenic factor as it outlines present information on the signalling pathways by which SPP induces its effects on cells of the developing vascular bed.  相似文献   

3.
Angiogenesis is a regulated process involving the proliferation, migration, and remodeling of different cell types particularly mature endothelial cells and recently discovered progenitor cells, named as endothelial progenitor cells (EPCs). Up to now, many attempts have been made to understand the dynamic balance of pro- and anti-angiogenic factors on EPCs on different milieu. It has been accepted that Ang-1, -2 and Tie-1, -2 signaling play a key role on angiogenesis pathways in endothelial lineage cells. In the current experiment, the angiogenic/angio-modulatory potency of Ang-1 and -2 was investigated on isolated EPCs. Freshly isolated EPCs were exposed to different concentrations of Ang-1 and -2 (25 and 50?ng/ml) over a course of 7 and 14 days. Corroborating to our results, a superior effect of Ang-1 on angiogenic properties, including an increased concentration of vascular endothelial growth factor, in vitro tubulogenesis, EPC migratory, Tie-2 expression and clonogenicity, was determined. A large amount of positive mature endothelium markers was achieved in EPCs being-exposed to Ang-1 peptide. Nonetheless, the number of CD133 positive cells increased in the presence of Ang-2. Collectively, we conclude that Ang-1 potentially induces functional and mature vascular-like behavior in EPCs more than Ang-2.  相似文献   

4.
5.
6.
Adrenomedullin (AM), a potent vasodilator, induces angiogenesis and inhibits cell apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. Transplantation of bone marrow-derived mononuclear cells (MNC) induces angiogenesis. We investigated whether infusion of AM enhances the therapeutic potency of MNC transplantation in a rat model of myocardial infarction. Immediately after coronary ligation, bone marrow-derived MNC (5 x 10(6) cells) were injected into the ischemic myocardium, followed by subcutaneous administration of 0.05 microg x kg(-1) x min(-1) AM (AM-MNC group) or saline (MNC group) for 3 days. Another two groups of rats received subcutaneous administration of AM alone (AM group) or saline (control group). Hemodynamic and histological analyses were performed 4 wk after treatment. Cardiac infarct size was significantly smaller in the MNC and AM groups than in the control group. A combination of AM infusion and MNC transplantation demonstrated a further decrease in infarct size. Left ventricular (LV) maximum change in pressure over time and LV fractional shortening were significantly improved only in the AM-MNC group. AM significantly increased capillary density in ischemic myocardium, suggesting the angiogenic potency of AM. AM infusion plus MNC transplantation demonstrated a further increase in capillary density compared with AM or MNC alone. Although MNC apoptosis was frequently observed 72 h after transplantation, AM markedly decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells among the transplanted MNC. In conclusion, AM enhanced the angiogenic potency of MNC transplantation and improved cardiac function in rats with myocardial infarction. This beneficial effect may be mediated partly by the angiogenic property of AM itself and by its antiapoptotic effect on MNC.  相似文献   

7.
A productive angiogenic response must couple to the survival machinery of endothelial cells to preserve the integrity of newly formed vessels. Angiopoietin-1 (Ang-1) is an endothelium-specific ligand essential for embryonic vascular stabilization, branching morphogenesis, and post-natal angiogenesis, but its contribution to endothelial cell survival has not been completely elucidated. Here we show that Ang-1 acting via the Tie 2 receptor induces phosphorylation of the survival serine-threonine kinase, Akt (or protein kinase B). This is associated with up-regulation of the apoptosis inhibitor, survivin, in endothelial cells and protection of endothelium from death-inducing stimuli. Moreover, dominant negative survivin negates the ability of Ang-1 to protect cells from undergoing apoptosis. The activation of anti-apoptotic pathways mediated by Akt and survivin in endothelial cells may contribute to Ang-1 stabilization of vascular structures during angiogenesis, in vivo.  相似文献   

8.
Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.  相似文献   

9.
Antiangiogenesis signals by endostatin.   总被引:49,自引:0,他引:49  
M Shichiri  Y Hirata 《FASEB journal》2001,15(6):1044-1053
  相似文献   

10.
Angiogenesis plays an important role in various pathological conditions as well as some physiological processes. Although a number of soluble angiogenic factors have been reported, extracellular matrix also has crucial effect on angiogenesis through interaction with endothelial cells. Since recent reports showed osteopontin had some angiogenic activity, the effect of the SVVYGLR peptide, novel binding motif in osteopontin molecule, on angiogenesis was examined in this study. Synthetic peptide SVVYGLR did not have proliferative effect on endothelial cells but adhesion and migration activity to endothelial cells. Furthermore, SVVYGLR had as potent activity for tube formation in three-dimensional collagen gel as vascular endothelial growth factor which is known to be the strongest angiogenic factor. Electron microscopical analysis showed a number of microvilli on the endothelial luminar surface and tight junction formation in the luminar intercellular border between endothelial cells, indicating SVVYGLR induced cell porarity and differentiation of endothelial cells. This small peptide might be expected to stimulate angiogenesis to improve some ischemic conditions in the future because of some advantages due to smaller molecular weight.  相似文献   

11.
Pleiotrophin (PTN) is produced under ischemic conditions and has been shown to induce angiogenesis in vivo. We studied whether or not PTN exerts chemotaxis of pro-angiogenic early endothelial progenitor cells (EPCs), a population of circulating cells that have been reported to participate in and stimulate angiogenesis. Chemotaxis of EPCs, isolated from blood of healthy humans (n = 5), was measured in transwell assays. PTN at 10-500 ng/ml elicited dose-dependent chemotaxis of both EPCs and human umbilical vein endothelial cells (HUVECs), but not of human coronary artery smooth muscle cells (CASMCs) and T98G glioblastoma cells that lack PTN receptors. The degree of chemotaxis was comparable to that induced by the angiogenic factors VEGF and SDF-1alpha. Chemotaxis to PTN was blocked by the NOS inhibitors L-NNA and L-NMMA, the NO scavenger PTIO, the phosphoinositide-3 kinase inhibitor wortmannin, and the guanylyl cyclase inhibitor ODQ, suggesting dependence of EPC chemotaxis on these pathways. PTN induced NOS-dependent production of NO to a similar degree as did VEGF, as indicated by the NO indicator DAF-2. PTN increased proliferation in EPCs and HUVECs to a similar extent as VEGF, but did not induce proliferation of CASMCs. While L-NNA abolished PTN-induced migration in EPCs and HUVECs, it did not inhibit PTN- and VEGF-enhanced proliferation and also caused proliferation by itself. These data suggest that PTN may mediate its pro-angiogenic effects by increasing the local number of not only endothelial cells but also early EPCs at angiogenic sites.  相似文献   

12.
Recently, the dipeptidyl peptidase‐4 (DPP‐4) inhibitor sitagliptin, a major anti‐hyperglycaemic agent, has received substantial attention as a therapeutic target for cardiovascular diseases via enhancing the number of circulating endothelial progenitor cells (EPCs). However, the direct effects of sitagliptin on EPC function remain elusive. In this study, we evaluated the proangiogenic effects of sitagliptin on a diabetic hind limb ischaemia (HLI) model in vivo and on EPC culture in vitro. Treatment of db/db mice with sitagliptin (Januvia) after HLI surgery efficiently enhanced ischaemic angiogenesis and blood perfusion, which was accompanied by significant increases in circulating EPC numbers. EPCs derived from the bone marrow of normal mice were treated with high glucose to mimic diabetic hyperglycaemia. We found that high glucose treatment induced EPC apoptosis and tube formation impairment, which were significantly prevented by sitagliptin pretreatment. A mechanistic study found that high glucose treatment of EPCs induced dramatic increases in oxidative stress and apoptosis; pretreatment of EPCs with sitagliptin significantly attenuated high glucose‐induced apoptosis, tube formation impairment and oxidative stress. Furthermore, we found that sitagliptin restored the basal autophagy of EPCs that was impaired by high glucose via activating the AMP‐activated protein kinase/unc‐51‐like autophagy activating kinase 1 signalling pathway, although an autophagy inhibitor abolished the protective effects of sitagliptin on EPCs. Altogether, the results indicate that sitagliptin‐induced preservation of EPC angiogenic function results in an improvement of diabetic ischaemia angiogenesis and blood perfusion, which are most likely mediated by sitagliptin‐induced prevention of EPC apoptosis via augmenting autophagy.  相似文献   

13.
The aim of this present study is to investigate the impacts of combinatorial simvastatin administration and endothelial progenitor cell (EPC) transplantation on therapeutic angiogenesis in an athymic nude mouse model of hind limb ischemia. Athymic nude mice were divided into four groups (n = 10/group): vehicle administration plus PBS injection (control), simvastatin administration plus PBS injection (simvastatin), vehicle administration plus EPC transplantation (EPC), and simvastatin administration plus EPC transplantation (combination). The combination therapy had the greatest laser Doppler blood perfusion imager (LDPI) index and capillary density among the four groups. Importantly, this combination therapy significantly reduced apoptosis of ischemic skeletal muscle cells in part through downregulation of Bax and upregulation of Bcl-2 compared with the other groups. Moreover, the combination therapy exhibited the highest efficacy of increasing the ratio of phospho-Akt to Akt among the four groups. Taken together, the simvastatin and EPC combination therapy promotes powerful angiogenesis in hindlimb ischemia. The combination therapy not only inhibites apoptosis of ischemic skeletal muscle cells partially via downregulation of Bax and upregulation of Bcl-2, but also activates Akt phosphorylation significantly. These efficacies may be mediated by the angiogenic potency of simvastatin, EPCs, and by the beneficial effects of simvastatin on transplanted EPCs as well.  相似文献   

14.
The role of adrenomedullin in angiogenesis   总被引:2,自引:0,他引:2  
Adrenomedullin (AM) is a 52 amino acid peptide originally isolated from human pheochromocytoma. It was initially demonstrated to have profound effects in vascular cell biology, since AM protects endothelial cells from apoptosis, promotes angiogenesis and affects vascular tone and permeability. This review article summarizes the literature data concerning the relationship between AM and angiogenesis and describes the relationship between vascular endothelial growth factor, hypoxia and AM and tumor angiogenesis. Finally, the role of AM as a potential target of antiangiogenic therapy is discussed.  相似文献   

15.
16.
MAGE-D1 is a member of the MAGE family of proteins, and functions as an adaptor that mediates multiple signaling pathways. The current study for the first time provides evidence for a role of MAGE-D1 in the negative regulation of angiogenic activity in vitro and in vivo models. Our findings showed that MAGE-D1 over-expression significantly suppressed the angiogenic key events such as endothelial cell migration and invasion, adhesion on collagen I substrate, and in vitro differentiation into tube-like structures under both normoxic and hypoxic conditions. MAGE-D1 over-expression also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. With further experiments, we revealed that MAGE-D1 over-expression disrupted actin cytoskeleton organization and lamellipodia formation, and down-regulated HIF-1-dependent gene expression in endothelial cells under hypoxic conditions. These findings demonstrate a new function of MAGE-D1 in the regulation of angiogenesis and provide new insight into the ability of MAGE-D1 to suppress the growth and angiogenic response of endothelial cells by interfering with HIF-1-dependent gene expression, and actin cytoskeleton reorganization, suggesting that MAGE-D1 might be a novel inhibitor of angiogenesis in vitro and in vivo.  相似文献   

17.
A recent study reported that endothelial progenitor cells (EPCs0 are one of the reservoirs of Kaposi’s sarcoma associated herpesvirus (KSHV). Although EPCs are closely linked to angiogenesis and vasculogenesis, little is known about the angiogenic potential of KSHV in EPCs. In this study, we used EPCs isolated from human umbilical cord blood to show that early infection by KSHV in vitro impaired the neovascularization of EPCs in matrigel. Our results suggest that KSHV may disrupt the angiogenic potential of EPCs and that the disseminated infection of KSHV could be associated with EPC dysfunction.  相似文献   

18.
Adrenomedullin in the treatment of pulmonary hypertension   总被引:10,自引:0,他引:10  
Nagaya N  Kangawa K 《Peptides》2004,25(11):2013-2018
Adrenomedullin (AM) is a potent, long-lasting pulmonary vasodilator peptide. Plasma AM level is elevated in patients with primary pulmonary hypertension (PPH), and circulating AM is partially metabolized in the lungs. These findings suggest that AM plays an important role in the regulation of pulmonary vascular tone and vascular remodeling. We have demonstrated the effects of three types of AM delivery systems: intravenous administration, inhalation, and cell-based gene transfer. Despite endogenous production of AM, intravenously administered AM at a pharmacologic level decreased pulmonary vascular resistance in patients with PPH. Inhalation of AM improved hemodynamics with pulmonary selectivity and exercise capacity in patients with PPH. Cell-based AM gene transfer ameliorated pulmonary hypertension rats. These results suggest that additional administration of AM may be effective in patients with pulmonary hypertension. AM may be a promising endogenous peptide for the treatment of pulmonary hypertension.  相似文献   

19.
BACKGROUND: New vessel growth is often associated with ischemia, and hypoxic tissue has been identified as a potential source of angiogenic factors. In particular, ischemia is associated with the development of neovascularization in a number of ocular pathologies. For this reason, we have studied the induction of endothelial cell mitogens by hypoxia in retinal cells. MATERIALS AND METHODS: Human retinal pigment epithelium (hRPE) were grown under normoxic and hypoxic conditions and examined for the production of endothelial mitogens. Northern analysis, biosynthetic labeling and immunoprecipitation, and ELISA were used to assess the levels of vascular endothelial growth factor/vascular permeability factor (VEGF) and basic fibroblast growth factor (bFGF), two endothelial cell mitogens and potent angiogenic factors. Soluble receptors for VEGF were employed as competitive inhibitors to determine the contribution of the growth factor to the hypoxia-stimulated mitogen production. RESULTS: Following 6-24 hr of hypoxia, confluent and growing cultures of hRPE increase their levels of VEGF mRNA and protein synthesis. Biosynthetic labeling studies and RT-PCR analysis indicate that the cells secrete VEGF121 and VEGF165, the soluble forms of the angiogenic factor. In contrast, hRPE cultured under hypoxic conditions show reduced steady-state levels of basic fibroblast growth factor (bFGF) mRNA and decreased bFGF protein synthesis. Unlike VEGF, bFGF is not found in conditioned media of hRPE following 24 hr of hypoxia. Using a soluble high-affinity VEGF receptor as a competitive inhibitor of VEGF, we demonstrate that a VEGF-like activity is the sole hypoxia-inducible endothelial mitogen produced by cultured hRPE. CONCLUSIONS: From this comparison we conclude that hRPE do not respond to hypoxia with a general, nonspecific increase in the overall levels of growth factors, as is seen during cell wounding responses or serum stimulation. The physiological relevance of data from this in vitro model are affirmed by separate studies in an animal model of retinal ischemia-induced ocular neovascularization (1) in which retina-derived VEGF levels have been shown to correlate spatio-temporally with the onset of angiogenesis. Taken together, these data support the hypothesis that the induction of VEGF by hypoxia mediates the rapid, initial angiogenic response to retinal ischemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号