首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work describes a novel and simple modification of the current microarray format. It reduces the sample/reagent volume to 1 μl and the hybridization time to 500 s. Both 20mer and 80mer oligonucleotide probes and singly labeled 20mer and 80mer targets, representative of the T-cell acute lymphocytic leukemia 1 (TAL1) gene, have been used to elucidate the performance of this hybridization approach. In this format, called shuttle hybridization, a conventional flat glass DNA microarray is integrated with a PMMA microfluidic chip to reduce the sample and reagent consumption to 1/100 of that associated with the conventional format. A serpentine microtrench is designed and fabricated on a PMMA chip using a widely available CO2 laser scriber. The trench spacing is compatible with the inter-spot distance in standard microarrays. The microtrench chip and microarray chip are easily aligned and assembled manually so that the microarray is integrated with a microfluidic channel. Discrete sample plugs are employed in the microchannel for hybridization. Flowing through the microchannel with alternating depths and widths scrambles continuous sample plug into discrete short plugs. These plugs are shuttled back and forth along the channel, sweeping over microarray probes while re-circulation mixing occurs inside the plugs. Integrating the microarrays into the microfluidic channel reduces the DNA–DNA hybridization time from 18 h to 500 s. Additionally, the enhancement of DNA hybridization reaction by the microfluidic device is investigated by determining the coefficient of variation (CV), the growth rate of the hybridization signal and the ability to discriminate single-base mismatch. Detection limit of 19 amol was obtained for shuttle hybridization. A 1 μl target was used to hybridize with an array that can hold 5000 probes.  相似文献   

2.
A theoretical analysis was developed to predict molecular hybridization rates for microarrays where samples flow through microfluidic channels and for conventional microarrays where samples remain stationary during hybridization. The theory was validated by using a multiplexed microfluidic microarray where eight samples were hybridized simultaneously against eight probes using 60-mer DNA strands. Mass transfer coefficients ranged over three orders of magnitude where either kinetic reaction rates or molecular diffusion rates controlled overall hybridization rates. Probes were printed using microfluidic channels and also conventional spotting techniques. Consistent with the theoretical model, the microfluidic microarray demonstrated the ability to print DNA probes in less than 1 min and to detect 10-pM target concentrations with hybridization times in less than 5 min.  相似文献   

3.
Synthetic DNA probes attached to microarrays usually range in length from 25 to 70 nucleotides. There is a compromise between short probes with lower sensitivity, which can be accurately synthesized in higher yields, and long probes with greater sensitivity but lower synthesis yields. Described here are microarrays printed with spots containing a mixture of two short probes, each designed to hybridize at noncontiguous sites in the same targeted sequence. We have shown that, for a printed microarray, mixed probe spots containing a pair of 30mers show significantly greater hybridization than spots containing a single 30mer and can approach the amount of hybridization to spots containing a 60mer or a 70mer. These spots with mixed oligonucleotide probes display cooperative hybridization signals greater than those that can be achieved by either probe alone. Both the higher synthesis yields of short probes and the greater sensitivity of long oligonucleotides can be utilized. This strategy provides new design options for microarray hybridization assays to detect RNA abundance, RNA splice variants, or sequence polymorphisms.  相似文献   

4.
DNA probe immobilization on plastic surfaces and device assembly are both critical to the fabrication of microfluidic hybridization array channel (MHAC) devices. Three oligonucleotide (oligo) probe immobilization procedures were investigated for attaching oligo probes on four different types of plastic surfaces (polystyrene, polycarbonate, poly(methylmethacrylate), and polypropylene). These procedures are the Surmodics procedure, the cetyltrimethylammonium bromide (CTAB) procedure, and the Reacti-Bind procedure. To determine the optimal plastic substrate and attachment chemistry for array fabrication, we investigated plastic hydrophobicity, intrinsic fluorescence, and oligo attachment efficiency. The Reacti-Bind procedure is least effective for attaching oligo probes in the microarray format. The CTAB procedure performs well enough to use in array fabrication, and the concentration of CTAB has a significant effect on oligo immobilization efficiency. We also found that use of amine-modified oligo probes resulted in better immobilization efficiency than use of unmodified oligos with the CTAB procedure. The oligo probe immobilization on plastic surfaces by the Surmodics procedure is the most effective with regard to probe spot quality and hybridization sensitivity. A DNA hybridization assay on such a device results in a limit of detection of 12pM. Utilizing a CO(2) IR laser machining and adhesive layer approach, we have developed an improved procedure for realizing a DNA microarray inside a microfluidic channel. This device fabrication procedure allows for more feasible spot placement in the channel and reduced sample adsorption by adhesive tapes used in the fabrication procedure. We also demonstrated improved hybridization kinetics and increased detection sensitivity in MHAC devices by implementing sample oscillation inside the channel. A limit of detection of 5pM has been achieved in MHAC devices with sample oscillation.  相似文献   

5.
A novel RNA-DNA hybridization microfluidic chip for detecting pathogens was developed. The on-chip sequential operations of reagent delivery and washing processes in the hybridization assay were performed by gravity-based pressure-driven flow controlled by a pair of electrokinetically controlled oil-droplet sequence valves (ECODSVs). Numerical method was used to simulate the fluidic processes of reagents in the complex microchannel network. Based on the parameters determined from the numerical simulations, a reasonable hybridization assay microfluidic chip was developed. The application of this on-chip assay to detect Salmonella was demonstrated. Significantly shortened assay time (25 min) and a 3-20-fold reduction in reagent/sample consumption were achieved. The detection limit was 103 CFU/mL which is comparable to the conventional assay. With further development of automatic control and the improvement of the detection strategy, this microfluidic RNA-DNA hybridization assay technique has a potential for point-of-testing applications.  相似文献   

6.
The fabrication quality of microarrays significantly influences the accuracy and reproducibility of microarray experiments. In this report, we present a simple and fast quality control (QC) method for spotted oligonucleotide and cDNA microarrays. It employs a nonspecific electrostatic interaction of colloidal gold nanoparticles with the chemical groups of DNA molecules and other biomolecules immobilized on the microarray surface that bear positive or negative charges. An inexpensive flatbed scanner is used to visualize and quantify the binding of cationic gold particles to the anionic DNA probes on the microarray surface. An image analysis software was designed to assess the various parameters of the array spots including spot intensity, shape and array homogeneity, calculate the overall array quality score, and save the detailed array quality report in an Excel file. The gold staining technique is fast and sensitive. It can be completed in 10 min and detect less than 1% of the probe amount commonly recommended for microarrays. Compared to the current microarray QC method that utilizes the hybridization of probes with short random sequence oligonucleotides labeled with fluorophore, our gold staining method requires less time for the analysis, reduces the reagent cost, and eliminates the need for the expensive laser scanner. Biotechnol. Bioeng. 2009; 102: 960–964. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques.  相似文献   

8.
研究两种不同的样本标记方法对人全基因组高密度60mer寡核苷酸芯片背景信号的影响。收集5对患病与健康人外周血单个核细胞,分别提取总RNA后,采用限制性显示技术(restriction display,RD)进行样本双色(Cy3/Cy5)荧光标记,与5张Agilent 60mer高密度(22K)Human 1B寡核苷酸芯片进行杂交。芯片全部杂交点分3组:基因探针组、阳性对照组和阴性对照组。阳性对照采用荧光标记寡核苷酸直接掺入法进行标记。对全部杂交信号点的Cy3和Cy5背景信号值,用SPSS软件进行数据转换、正态性检验、方差齐性检验、变异系数分析和重复数据的方差分析。数据分析结果显示,Cy3 标记的背景信号值均高于 Cy5标记的背景信号值。重复测量数据的方差分析表明,在Cy3 和Cy5标记中,两种不同标记方法间的背景信号值的差异极显著(PCy3<0.01, PCy5<0.01),且RD标记点的背景信号平均值低于荧光标记寡核苷酸直接掺入标记法标记的阳性对照点。RD标记方法是一种有用的低背景信号的高密度长链寡核苷酸芯片样本标记方法。  相似文献   

9.
10.
We have microfabricated a flow-through biochip for the analysis of single base mutations in genomic DNA using two different materials: (1) a polycarbonate (PC) chip for performing a primary polymerase chain reaction (PCR) followed by an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using a universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for sequential PCR/LDR in a continuous-flow format, in which the following three steps were carried out: (1) exponential amplification of gene fragments from genomic DNA; (2) mixing of the resultant PCR product with a LDR mixture via a Y-shaped passive micromixer and (3) ligation of two primers only when the particular mutation was present in the genomic DNA. A PMMA chip was employed as the microarray device, where zip code sequences (24-mer), which were complementary to sequences present on the discriminating primer, were micro-printed into fluidic channels embossed into the PMMA substrate. We successfully demonstrate the ability to detect one mutant DNA in 80 normal sequences with the integrated microfluidic device. The PCR/LDR/hybridization assay using the microchips performed the entire assay at a relatively fast processing speed: 18.7 min for PCR, 8.1 min for LDR, 5 min for hybridization, 10 min for washing and 2.6 min for fluorescence scanning (total processing time=ca. 50 min) with an order of magnitude reduction in reagents compared to bench-top formats.  相似文献   

11.
This paper presents a microfluidic chip capable of performing precise continuous pH measurements in an automatic mode. The chip is fabricated using micro-electro-mechanical-systems (MEMS)-based techniques and incorporates polydimethylsiloxane (PDMS) microstructures, pH-sensing electrodes and pneumatic fluid-control devices. Through its enhanced microchannel design and use of pneumatic fluid-control devices, the microfluidic chip reduces the dead volume of the sample and increases the pumping rate. The maximum pumping rate of the developed micro-pump is 28 microL/min at an air pressure of 10 psi and a driving frequency of 10 Hz. The total sample volume consumed in each sensing operation is just 0.515 microL. As a result, the developed chip reduces the sample volume compared to conventional large-scale pH-sensing systems. The microfluidic chip employs the electrochemical sensing method to conduct precise pH level measurements. The sensing electrodes are fabricated by sputtering a layer of SiO(2)-LiO(2)-BaO-TiO(2)-La(2)O(3) (SLBTLO) onto platinum (Pt) electrodes and the pH value of the sample is evaluated by measuring the potential difference between the sensing electrodes and a reference electrode. Additionally, the integration of the microfluidic chip with a pneumatic fluid-control device facilitates automatic sample injection and a continuous sensing operation. The developed system provides a valuable tool with which to examine pH values in a wide range of biomedical and industrial applications.  相似文献   

12.
We propose two efficient heuristics for minimizing the number of oligonucleotide probes needed for analyzing populations of ribosomal RNA gene (rDNA) clones by hybridization experiments on DNA microarrays. Such analyses have applications in the study of microbial communities. Unlike in the classical SBH (sequencing by hybridization) procedure, where multiple probes are on a DNA chip, in our applications we perform a series of experiments, each one consisting of applying a single probe to a DNA microarray containing a large sample of rDNA sequences from the studied population. The overall cost of the analysis is thus roughly proportional to the number of experiments, underscoring the need for minimizing the number of probes. Our algorithms are based on two well-known optimization techniques, i.e. simulated annealing and Lagrangian relaxation, and our preliminary tests demonstrate that both algorithms are able to find satisfactory probe sets for real rDNA data.  相似文献   

13.
Merging microfluidics with microarray-based bioassays   总被引:1,自引:0,他引:1  
Microarray technologies provide powerful tools for biomedical researchers and medicine, since arrays can be configured to monitor the presence of molecular signatures in a highly parallel fashion and can be configured to search either for nucleic acids (DNA microarrays) or proteins (antibody-based microarrays) as well as different types of cells. Microfluidics on the other hand, provides the ability to analyze small volumes (micro-, nano- or even pico-liters) of sample and minimize costly reagent consumption as well as automate sample preparation and reduce sample processing time. The marriage of microarray technologies with the emerging field of microfluidics provides a number of advantages such as, reduction in reagent cost, reductions in hybridization assay times, high-throughput sample processing, and integration and automation capabilities of the front-end sample processing steps. However, this potential marriage is also fraught with some challenges as well, such as developing low-cost manufacturing methods of the fluidic chips, providing good interfaces to the macro-world, minimizing non-specific analyte/wall interactions due to the high surface-to-volume ratio associated with microfluidics, the development of materials that accommodate the optical readout phases of the assay and complete integration of peripheral components (optical and electrical) to the microfluidic to produce autonomous systems appropriate for point-of-care testing. In this review, we provide an overview and recent advances on the coupling of DNA, protein and cell microarrays to microfluidics and discuss potential improvements required for the implementation of these technologies into biomedical and clinical applications.  相似文献   

14.
15.
16.
寡核苷酸芯片技术是一种高通量发掘和采集生物信息的强大技术平台,目前已广泛应用于生物科学领域 . 为改善寡核苷酸芯片的分析性能,对影响芯片杂交结果的因素,如片基表面的化学处理、探针的长度、间隔臂的长度、杂交条件等,进行了深入的研究和优化 . 对寡核苷酸芯片而言,仍有待解决的问题是如何产生更强的荧光信号来改善其检测灵敏度 . 利用两种类型的多个荧光分子标记的引物,来增强二维寡核苷酸芯片平面上的荧光信号强度 . 两种引物分别命名为:多标记线性引物和多标记分支引物 . 通过增加标记在目标 DNA 片段上的荧光分子数,可以显著增强寡核苷酸芯片上相应捕获探针的信号强度 . 实验表明,使用多标记引物能将所用的寡核苷酸微阵列的检测限 ( 以能够检测的最低模板量计算 ) 降低至单荧光标记引物的 1/100 以下,多重标记技术是一种有效增强微型化探针矩阵检测灵敏度的信号放大方法 .  相似文献   

17.
A novel enzyme-linked DNA hybridization assay on an interdigitated array (IDA) microelectrode integrated into a microfluidic channel is demonstrated with sub-nM detection limit. To improve the detection limit as compared to conventional electrochemical biosensors, a recyclable redox product, 4-aminophenol (PAP) is used with an IDA microelectrode. The IDA has a modest and easily fabricated inter-digit spacing of 10 μm, yet we were able to demonstrate 97% recycling efficiency of PAP due to the integration in a microfluidic channel. With a 70 nL sample volume, the characterized detection limit for PAP of 1.0 × 10?1? M is achieved, with a linear dynamic range that extends from 1.0 × 10?? to 1.0 × 10?? M. This detection limit, which is the lowest reported detection limit for PAP, is due to the increased sensitivity provided by the sample confinement in the microfluidic channel, as well as the increased repeatability due to perfectly static flow in the microchannel and an additional anti-fouling step in the protocol. DNA sequence detection is achieved through a hybridization sandwich of an immobilized complementary probe, the target DNA sequence, and a second complementary probe labeled with β-galactosidase (β-GAL); the β-GAL converts its substrate, 4-aminophenyl-d-galactopyranoside (PAPG), into PAP. In this report we present the lowest reported observed detection limit (1.0 × 10?1? M) for an enzyme-linked DNA hybridization assay using an IDA microelectrode and a redox signaling paradigm. Thus, we have demonstrated highly sensitive detection of a targeted DNA sequence using a low-cost easily fabricated electrochemical biosensor integrated into a microfluidic channel.  相似文献   

18.
Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac), watermelon silver mottle virus (WSMoV), and melon yellow spot virus (MYSV) screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5–10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation.  相似文献   

19.
A sensitive determination of a synthetic fluoroquinolone antibacterial agent, moxifloxacin (MOX), by an enhanced chemiluminescence (CL) method using a microfluidic chip is described. The microfluidic chip was fabricated by a soft‐lithographic procedure using polydimethyl siloxane (PDMS). The fabricated PDMS microfluidic chip had three‐inlet microchannels for introducing the sample, chemiluminescent reagent and oxidant, and a 500 µm wide, 250 µm deep and 82 mm long microchannel. An enhanced CL system, luminol–ferricyanide, was adopted to analyze the MOX concentration in a sample solution. CL light was emitted continuously after mixing luminol and ferricyanide in the presence of MOX on the PDMS microfluidic chip. The amount of MOX in the luminol–ferricyanide system influenced the intensity of the CL light. The linear range of MOX concentration was 0.14–55.0 ng/mL with a correlation coefficient of 0.9992. The limit of detection (LOD) and limit of quantification (LOQ) were 0.06 and 0.2 ng/mL respectively. The presented method afforded good reproducibility, with a relative standard deviation (RSD) of 1.05% for 10 ng/mL of MOX, and has been successfully applied for the determination of MOX in pharmaceutical and biological samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
For routine mass screening, the use of microarrays is hampered because one chip can only analyze one sample. 16S rRNA gene PCR products of several bacterial strains or mixtures thereof were consecutively loaded on a single electronic microarray and successfully analyzed using probes specific for the bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号