首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.  相似文献   

2.
A structural and kinetic model of actomyosin interaction in a contracting muscle fiber has been proposed, based on the assumption that the myosin molecular motor generates force in two steps. Initially, a nonstereospecifically attached myosin head rolls on the actin surface and stereospecifically locks on actin. Then its α-helical lever arm (neck domain) tilts about its catalytic domain. The model also includes the modern scheme of ATP hydrolysis by actomyosin. The results of modeling presented here quantitatively reproduce all experimentally observed characteristics of the responses of tension and stiffness of muscle fibers to T-jumps of different amplitudes.  相似文献   

3.
A conventional five-step chemo-mechanical cycle of the myosin–actin ATPase reaction, which implies myosin detachment from actin upon release of hydrolysis products (ADP and phosphate, Pi) and binding of a new ATP molecule, is able to fit the [Pi] dependence of the force and number of myosin motors during isometric contraction of skeletal muscle. However, this scheme is not able to explain why the isometric ATPase rate of fast skeletal muscle is decreased by an increase in [Pi] much less than the number of motors. The question can be solved assuming the presence of a branch in the cycle: in isometric contraction, when the force generation process by the myosin motor is biased at the start of the working stroke, the motor can detach at an early stage of the ATPase cycle, with Pi still bound to its catalytic site, and then rapidly release the hydrolysis products and bind another ATP. In this way, the model predicts that in fast skeletal muscle the energetic cost of isometric contraction increases with [Pi]. The large dissociation constant of the product release in the branched pathway allows the isometric myosin–actin reaction to fit the equilibrium constant of the ATPase.  相似文献   

4.
Kitamura K  Yanagida T 《Bio Systems》2003,71(1-2):101-110
The epoch-making techniques for manipulating a single myosin molecule have recently been developed, and the unitary mechanical reactions of a single actomyosin, muscle motor molecule, are directly measured. The data show that the unitary mechanical step during sliding along an actin filament of approximately 5.5 nm, but groups of two to five rapid steps in succession produce displacements of approximately 11-30 nm. The instances of multiple stepping are produced by single myosin heads during one biochemical cycle of ATP hydrolysis. Thus, the coupling between ATP hydrolysis cycle and mechanical step is variable, i.e. loose-coupling. Such a unique operation of actomyosin molecules is different from that of man-made machines, and most likely explains the flexible and effective mechanisms of molecular machines in the biosystems.  相似文献   

5.
Myosin produces force in a cyclic interaction, which involves alternate tight binding to actin and to ATP. We have investigated the energetics associated with force production by measuring the force generated by skinned muscle fibers as the strength of the actomyosin bond is changed. We varied the strength of the actomyosin bond by addition of a polymer that promotes protein-protein association or by changing temperature or ionic strength. We estimated the free energy available to generate force by measuring isometric tension, as the free energy of the states that precede the working stroke are lowered with increasing phosphate. We found that the free energy available to generate force and the force per attached cross-bridge at low [Pi] were both proportional to the free energy available from the formation of the actomyosin bond. We conclude that the formation of the actomyosin bond is involved in providing the free energy driving the production of isometric tension and mechanical work. Because the binding of myosin to actin is an endothermic, entropically driven reaction, work must be performed by a "thermal ratchet" in which a thermal fluctuation in Brownian motion is captured by formation of the actomyosin bond.  相似文献   

6.
The myosin motor protein generates force in muscle by hydrolyzing Adenosine 5′-triphosphate (ATP) while interacting transiently with actin. Structural evidence suggests the myosin globular head (subfragment 1 or S1) is articulated with semi-rigid catalytic and lever-arm domains joined by a flexible converter domain. According to the prevailing hypothesis for energy transduction, ATP binding and hydrolysis in the catalytic domain drives the relative movement of the lever arm. Actin binding and reversal of the lever-arm movement (power stroke) applies force to actin. These domains interface at the reactive lysine, Lys84, where trinitrophenylation (TNP-Lys84-S1) was observed in this work to block actin activation of myosin ATPase and in vitro sliding of actin over myosin. TNP-Lys84-S1's properties and interactions with actin were examined to determine how trinitrophenylation causes these effects. Weak and strong actin binding, the rate of mantADP release from actomyosin, and actomyosin dissociation by ATP were equivalent in TNP-Lys84-S1 and native S1. Molecular dynamics calculations indicate that lever-arm movement inhibition during ATP hydrolysis and the power stroke is caused by steric clashes between TNP and the converter or lever-arm domains. Together these findings suggest that TNP uncouples actin activation of myosin ATPase and the power stroke from other steps in the contraction cycle by inhibiting the converter and lever-arm domain movements.  相似文献   

7.
A crucial point for mechanical force generation in actomyosin systems is how the energy released by ATP hydrolysis in the myosin motor domain gives rise to the movement of the myosin head along the actin filament. We assumed the signal of the ATP hydrolysis to be transmitted as modulated atomic vibrations from the nucleotide-binding site throughout the myosin head, and carried out 1-ns all-atom molecular dynamics simulations for that signal transmission. We distributed the released energy to atoms located around the ATPase pocket as kinetic energies and examined how the effect of disturbance extended throughout the motor domain. The result showed that the disturbance signal extended over the motor domain in 150 ps and induced slowly varying collective motions of atoms at the actin-binding site and the junction with the neck, both of which are relevant to the movement of the myosin head along the actin filament. We also performed a principal component analysis of thermal atomic motions for the motor domain, and the first principal component was consistent with the response to the disturbance given to the ATPase pocket.  相似文献   

8.
The motor protein myosin in association with actin transduces chemical free energy in ATP into work in the form of actin translation against an opposing force. Mediating the actomyosin interaction in myosin is an actin binding site distributed among several peptides on the myosin surface including surface loops contributing to affinity and actin regulation of myosin ATPase. A structured surface loop on beta-cardiac myosin, the cardiac or C-loop, was recently demonstrated to affect myosin ATPase and was indirectly implicated in the actomyosin interaction. The C-loop is a conserved feature of all myosin isoforms with crystal structures, suggesting that it is an essential part of the core energy transduction machinery. It is shown here that proteolytic digestion of the C-loop in beta-cardiac myosin eliminates actin-activated myosin ATPase and reduces actomyosin affinity in rigor more than 100-fold. Studies of C-loop function in smooth muscle myosin were also undertaken using site-directed mutagenesis. Mutagenesis of a single charged residue in the C-loop of smooth muscle myosin alters actomyosin affinity and doubles myosin in vitro motility and actin-activated ATPase velocities, thereby involving a charged region of the loop in the actomyosin interaction. It appears likely that the C-loop is an essential electrostatic binding site for actin involved in modulation of actomyosin affinity and regulation of actomyosin ATPase velocity.  相似文献   

9.
We have developed a new technique for measurements of piconewton forces and nanometer displacements in the millisecond time range caused by actin-myosin interaction in vitro by manipulating single actin filaments with a glass microneedle. Here, we describe in full the details of this method. Using this method, the elementary events in energy transduction by the actomyosin motor, driven by ATP hydrolysis, were directly recorded from multiple and single molecules. We found that not only the velocity but also the force greatly depended on the orientations of myosin relative to the actin filament axis. Therefore, to avoid the effects of random orientation of myosin and association of myosin with an artificial substrate in the surface motility assay, we measured forces and displacements by myosin molecules correctly oriented in single synthetic myosin rod cofilaments. At a high myosin-to-rod ratio, large force fluctuations were observed when the actin filament interacted in the correct orientation with a cofilament. The noise analysis of the force fluctuations caused by a small number of heads showed that the myosin head generated a force of 5.9 +/- 0.8 pN at peak and 2.1 +/- 0.4 pN on average over the whole ATPase cycle. The rate constants for transitions into (k+) and out of (k-) the force generation state and the duty ratio were 12 +/- 2 s-1, and 22 +/- 4 s-1, and 0.36 +/- 0.07, respectively. The stiffness was 0.14 pN nm-1 head-1 for slow length change (100 Hz), which would be approximately 0.28 pN nm-1 head-1 for rapid length change or in rigor. At a very low myosin-to-rod ratio, distinct actomyosin attachment, force generation (the power stroke), and detachment events were directly detected. At high load, one power stroke generated a force spike with a peak value of 5-6 pN and a duration of 50 ms (k(-)-1), which were compatible with those of individual myosin heads deduced from the force fluctuations. As the load was reduced, the force of the power stroke decreased and the needle displacement increased. At near zero load, the mean size of single displacement spikes, i.e., the unitary steps caused by correctly oriented myosin, which were corrected for the stiffness of the needle-to-myosin linkage and the randomizing effect by the thermal vibration of the needle, was approximately 20 nm.  相似文献   

10.
We propose a muscle contraction model that is essentially a model of the motion of myosin motors as described by a Langevin equation. This model involves one-dimensional numerical calculations wherein the total force is the sum of a viscous force proportional to the myosin head velocity, a white Gaussian noise produced by random forces and other potential forces originating from the actomyosin structure and intra-molecular charges. We calculate the velocity of a single myosin on an actin filament to be 4.9–49 μm/s, depending on the viscosity between the actomyosin molecules. A myosin filament with a hundred myosin heads is used to simulate the contractions of a half-sarcomere within the skeletal muscle. The force response due to a quick release in the isometric contraction is simulated using a process wherein crossbridges are changed forcibly from one state to another. In contrast, the force response to a quick stretch is simulated using purely mechanical characteristics. We simulate the force–velocity relation and energy efficiency in the isotonic contraction and adenosine triphosphate consumption. The simulation results are in good agreement with the experimental results. We show that the Langevin equation for the actomyosin potentials can be modified statistically to become an existing muscle model that uses Maxwell elements.  相似文献   

11.
Highsmith S  Polosukhina K  Eden D 《Biochemistry》2000,39(40):12330-12335
We have investigated coupling of lever arm rotation to the ATP binding and hydrolysis steps for the myosin motor domain. In several current hypotheses of the mechanism of force production by muscle, the primary mechanical feature is the rotation of a lever arm that is a subdomain of the myosin motor domain. In these models, the lever arm rotates while the myosin motor domain is free, and then reverses the rotation to produce force while it is bound to actin. These mechanical steps are coupled to steps in the ATP hydrolysis cycle. Our hypothesis is that ATP hydrolysis induces lever arm rotation to produce a more compact motor domain that has stored mechanical energy. Our approach is to use transient electric birefringence techniques to measure changes in hydrodynamic size that result from lever arm rotation when various ligands are bound to isolated skeletal muscle myosin motor domain in solution. Results for ATP and CTP, which do support force production by muscle fibers, are compared to those of ATPgammaS and GTP, which do not. Measurements are also made of conformational changes when the motor domain is bound to NDP's and PP(i) in the absence and presence of the phosphate analogue orthovanadate, to determine the roles the nucleoside moieties of the nucleotides have on lever arm rotation. The results indicate that for the substrates investigated, rotation does not occur upon substrate binding, but is coupled to the NTP hydrolysis step. The data are consistent with a model in which only substrates that produce a motor domain-NDP-P(i) complex as the steady-state intermediate make the motor domain more compact, and only those substrates support force production.  相似文献   

12.
During interaction of actin with myosin, cross-bridges impart mechanical impulses to thin filaments resulting in rotations of actin monomers. Impulses are delivered on the average every tc seconds. A cross-bridge spends a fraction of this time (ts) strongly attached to actin, during which it generates force. The "duty cycle" (DC), defined as the fraction of the total cross-bridge cycle that myosin spends attached to actin in a force generating state (ts/ tc), is small for cross-bridges acting against zero load, like freely shortening muscle, and increases as the load rises. Here we report, for the first time, an attempt to measure DC of a single cross-bridge in muscle. A single actin molecule in a half-sarcomere was labeled with fluorescent phalloidin. Its orientation was measured by monitoring intensity of the polarized TIRF images. Actin changed orientation when a cross-bridge bound to it. During isometric contraction, but not during rigor, actin orientation oscillated between two values, corresponding to the actin-bound and actin-free state of the cross-bridge. The average ts and tc were 3.4 and 6 s, respectively. These results suggest that, in isometrically working muscle, cross-bridges spend about half of the cycle time attached to actin. The fact that 1/ tc was much smaller than the ATPase rate suggests that the bulk of the energy of ATP hydrolysis is used for purposes other than performance of mechanical work.  相似文献   

13.
Gerald S. Manning 《Biopolymers》2016,105(12):887-897
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar‐like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical‐chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress‐generating conformational changes in the myosin cross bridge, and relief of built‐up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin–myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin–myosin engagement during the weak‐to‐strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin–myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre‐power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle.  相似文献   

14.
The ATP hydrolysis rate and shortening velocity of muscle are load-dependent. At the molecular level, myosin generates force and motion by coupling ATP hydrolysis to lever arm rotation. When a laser trap was used to apply load to single heads of expressed smooth muscle myosin (S1), the ADP release kinetics accelerated with an assistive load and slowed with a resistive load; however, ATP binding was mostly unaffected. To investigate how load is communicated within the motor, a glycine located at the putative fulcrum of the lever arm was mutated to valine (G709V). In the absence of load, stopped-flow and laser trap studies showed that the mutation significantly slowed the rates of ADP release and ATP binding, accounting for the ~270-fold decrease in actin sliding velocity. The load dependence of the mutant's ADP release rate was the same as that of wild-type S1 (WT) despite the slower rate. In contrast, load accelerated ATP binding by ~20-fold, irrespective of loading direction. Imparting mechanical energy to the mutant motor partially reversed the slowed ATP binding by overcoming the elevated activation energy barrier. These results imply that conformational changes near the conserved G709 are critical for the transmission of mechanochemical information between myosin's active site and lever arm.  相似文献   

15.
There is a long-running debate on the working mechanism of myosin molecular motors, which, by interacting with actin filaments, convert the chemical energy of ATP into a variety of mechanical work. After the development of technologies for observing and manipulating individual working molecules, experimental results negating the widely accepted 'lever-arm hypothesis' have been reported. In this paper, based on the experimental results so far accumulated, an alternative hypothesis is proposed, in which motor molecules are modelled as electromechanical components that interact with each other through electrostatic force. Electrostatic attractive force between myosin and actin is assumed to cause a conformational change in the myosin head during the attachment process. An elastic energy resulting from the conformational change then produces the power stroke. The energy released at the ATP hydrolysis is mainly used to detach the myosin head from actin filaments. The mechanism presented in this paper is compatible with the experimental results contradictory to the previous theories. It also explains the behavior of myosins V and VI, which are engaged in cellular transport and move processively along actin filaments.  相似文献   

16.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   

17.
Movements in muscles are generated by the myosins which interact with the actin filaments. In this paper we present an electric theory to describe how the chemical energy is first stored in electrostatic form in the myosin system and how it is then released and transformed into work. Due to the longitudinal polarized molecular structure with the negative phosphate group tail, the ATP molecule possesses a large electric dipole moment (p(0)), which makes it an ideal energy source for the electric dipole motor of the actomyosin system. The myosin head contains a large number of strongly restrained water molecules, which makes the ATP-driven electric dipole motor possible. The strongly restrained water molecules can store the chemical energy released by ATP binding and hydrolysis processes in the electric form due to their myosin structure fixed electric dipole moments (p(i)). The decrease in the electric energy is transformed into mechanical work by the rotational movement of the myosin head, which follows from the interaction of the dipoles p(i) with the potential field V(0) of ATP and with the potential field Psi of the actin. The electrical meaning of the hydrolysis reaction is to reduce the dipole moment p(0)-the remaining dipole moment of the adenosine diphosphate (ADP) is appropriately smaller to return the low negative value of the electric energy nearly back to its initial value, enabling the removal of ADP from the myosin head so that the cycling process can be repeated. We derive for the electric energy of the myosin system a general equation, which contains the potential field V(0) with the dipole moment p(0), the dipole moments p(i) and the potential field psi. Using the previously published experimental data for the electric dipole of ATP (p(0) congruent with 230 debye) and for the amount of strongly restrained water molecules (N congruent with 720) in the myosin subfragment (S1), we show that the Gibbs free energy changes of the ATP binding and hydrolysis reaction steps can be converted into the form of electric energy. The mechanical action between myosin and actin is investigated by the principle of virtual work. An electric torque always appears, i.e. a moment of electric forces between dipoles p(0) and p(i)(/M/ > or = 16 pN nm) that causes the myosin head to function like a scissors-shaped electric dipole motor. The theory as a whole is illustrated by several numerical examples and the results are compared with experimental results.  相似文献   

18.
Muscle contraction is driven by the cyclical interaction of myosin with actin, coupled with ATP hydrolysis. Myosin attaches to actin, forming a crossbridge that produces force and movement as it tilts or rocks into subsequent bound states before finally detaching. It has been hypothesized that the kinetics of one or more of these mechanical transitions are dependent on load, allowing muscle to shorten quickly under low load, but to sustain tension economically, with slowly cycling crossbridges under high load conditions. The idea that muscle biochemistry depends on mechanical output is termed the 'Fenn effect'. However, the molecular details of how load affects the kinetics of a single crossbridge are unknown. Here, we describe a new technique based on optical tweezers to rapidly apply force to a single smooth muscle myosin crossbridge. The crossbridge produced movement in two phases that contribute 4 nm + 2 nm of displacement. Duration of the first phase depended in an exponential manner on the amplitude of applied load. Duration of the second phase was much less affected by load, but was significantly shorter at high ATP concentration. The effect of load on the lifetime of the bound crossbridge is to prolong binding when load is high, but to accelerate release when load is low or negative.  相似文献   

19.
To examine the possibility of cooperative interactions between the two myosin heads in muscle contraction, Ca2+-activated force development, K+-EDTA-and Mg2+-ATPase activities, muscle fiber stiffness, and the velocity of unloaded shortening were measured on partially p-phenylenedimaleimide (p-PDM)-treated glycerinated muscle fibers, which contained a mixture of myosin molecules with zero, one, and two of their heads inactivated, and the relationships among these values (expressed relative to the control values) were studied. It was found that the magnitude of the Ca2+-activated isometric force development was proportional to the square of both K+-EDTA- and Mg2+-ATPase activities and also to the square of muscle fiber stiffness. If the two myosin heads in the glycerinated fibers are assumed to react independently with p-PDM, the above results strongly suggest that each myosin molecule in the thick filaments can generate force only when its two heads do not react with p-PDM, muscle fiber stiffness is determined by the total number of native heads, and there is no cooperative interaction between the two myosin heads in catalyzing ATP hydrolysis.  相似文献   

20.
A new model of skeletal muscle contraction is presented from a unified view of muscle physiology, chemical energetics and newly obtained experimental data concerning actomyosin ATPase in vitro.In this model an interaction between actin and myosin, involving two distinct active sites, is considered to be the essential elementary mechanism for muscle contractions. These two sites are located on myosin. One site, forming a myosin-ADP-P, complex, has stored energy derived from ATP splitting before the beginning of a contraction. Another site, forming a myosin-ATP complex, upon interacting with actin, catalyzes ATP hydrolysis, using a fraction of the stored energy. The hydrolysis at the latter site is responsible for tension development, while the stored energy is released to drive the contractile reaction between actin and myosin unidirectionally. (Thus, the two sites act co-operatively and they can be viewed as forming an active enzyme.)There has been a difficulty in explaining the shortening heat production with apparent lack of corresponding chemical change at the early stage of contraction. The active enzyme model accounts for the shortening heat as the irreversible release of the stored energy. The heat production appears to precede its corresponding ATP splitting for “refueling” which occurs after complete exhaustion of the stored energy, while the actomyosin ATP hydrolysis takes place proportionally to the work. At the macroscopic level, the model is compatible with Hill's tension-velocity and heat relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号