首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female two‐spotted spider mite Tetranychus urticae are grown under different photoperiods and the photoperiodic regulation of diapause is examined. The photoperiodic response curve for diapause induction was of the long day–short day type, with critical day lengths (CDLs) of 2 and 12.5 h; diapause was induced between these CDLs. The preimaginal period is significantly longer in diapausing females than in non‐diapausing females; moreover, a significant positive correlation is detected between diapause incidence and deutonymphal period. Diapause incidence is high when long‐night photoperiods are applied against a background of continuous darkness in the stages including the deutonymph; this stage appears to be the most sensitive to photoperiod. These observations suggest that diapause‐inducing conditions inhibit nymphal development, particularly in the deutonymphal stage when photoperiodic time measurement for determination of reproduction or diapause is carried out.  相似文献   

2.
The incidence of diapause in the spider mite Tetranychus urticae was predicted for various photoperiodic regimes, according to the external coincidence model of photoperiodic time measurement. A phase response curve was constructed for the hypothetical photoperiodic oscillator in these mites: entrainment of this photoperiodic oscillator to a variety of ‘complete’ and ‘skeleton’ photoperiods was calculated using a transformation method for circadian rhythms. The external coincidence model proved adequate to describe experimental results with T. urticae in ‘complete’ photoperiods (T = 24 hr), symmetrical ‘skeleton’ photoperiods (T = 24 hr), asymmetrical ‘skeleton’ photoperiods (T = 24 hr) (night-interruption experiments), and ‘resonance’ experiments, in which the light component of a light/dark cycle was held constant at 8 hr and the dark component was varied over a wide range in successive experiments, providing cycles with period lengths up to 92 hr. The external coincidence model proved inadequate to explain results obtained in a ‘T-experiment’ with T. urticae comprising 1 hr pulses of light in a cycle of LD1:17.5 (T = 18.5 hr) with the first pulse of the train starting at different circadian phases. The validity and limitations of the external coincidence model as an explanation of photoperiodic time measurement in T. urticae are discussed in view of the above results.  相似文献   

3.
Summary Pupal diapause ofPieris brassicae can be terminated experimentally by the sole action of photoperiod. Curves gave evidence of similar effect of photoperiod within a broad range of regimes in both diapause induction and termination. However, they showed opposite responses to ultra-short and ultra-long days and to continuous light and darkness. In diapause termination, the critical daylength is longer than in diapause induction by about 1.20 h.Results of night interruption experiments (asymmetrical skeleton photoperiods) provided the first reliable evidence of the involvement of a particular light-sensitive phase in photoperiodic diapause termination. A light pulse delivered at this moment elicited a complete long-day effect (i.e. diapause termination). Only one single point of long-day effect (lying in the early night) was disclosed in diapause termination whereas two points (A and B) characterize diapause induction in this species. Results of experimental designs where the period of the photoperiodic cycles differed from 24 h indicated that photoperiodic clock likely makes a nightlength measurement in both diapause induction and termination. This is discussed in relation to the formal properties of the clock, especially those derived from the time distribution of points of long-day effect.  相似文献   

4.
Living in seasonally changing environments requires adaptation to seasonal cycles. Many insects use the change in day length as a reliable cue for upcoming winter and respond to shortened photoperiod through diapause. In this study, we report the clinal variation in photoperiodic diapause induction in populations of the parasitoid wasp Nasonia vitripennis collected along a latitudinal gradient in Europe. In this species, diapause occurs in the larval stage and is maternally induced. Adult Nasonia females were exposed to different photoperiodic cycles and lifetime production of diapausing offspring was scored. Females switched to the production of diapausing offspring after exposure to a threshold number of photoperiodic cycles. A latitudinal cline was found in the proportion of diapausing offspring, the switch point for diapause induction measured as the maternal age at which the female starts to produce diapausing larvae, and the critical photoperiod for diapause induction. Populations at northern latitudes show an earlier switch point, higher proportions of diapausing individuals and longer critical photoperiods. Since the photoperiodic response was measured under the same laboratory conditions, the observed differences between populations most likely reflect genetic differences in sensitivity to photoperiodic cues, resulting from local adaptation to environmental cycles. The observed variability in diapause response combined with the availability of genomic tools for N. vitripennis represent a good opportunity to further investigate the genetic basis of this adaptive trait.  相似文献   

5.
ABSTRACT. Photoperiodic control of facultative reproductive diapause was examined in females of the phytoseiid mite, Amblyseius potentillae (Garman). Full diapause was induced by rearing the mites from egg to adult under short-day photoperiods. Egg-laying females, however, which had experienced a long-day photoperiodic regime during pre-imaginal development, could still be induced to enter diapause when they were transferred to a short-day regime. Diapause development proceeded slowly under a short-day photoperiod, but was accelerated under long days. During diapause development under short days the photoperiodic sensitivity of the females diminished gradually and ultimately disappeared completely. However, after completion of diapause, sensitivity to photo-period reappeared. A second diapause could be induced in post-diapause females under short-day photoperiods and completed again under long-day photoperiods. These results show that A. potentillae remains sensitive to diapause-inducing and diapause-averting daylengths during the adult stage and that a second diapause may be induced after completion of the first one.  相似文献   

6.
Abstract  Photoperiodic sensitivity for diapause induction of the green lacewing, Chrysoperla sinica (Tjeder) was examined at 22°C. The adult diapause of C. sinica was induced by short-day photoperiods, and the critical photoperiod for its induction was between 12.5L-11.5D and 13L-11D.
Adults developed without diapause under long-day conditions, and entered diapause under short-day conditions. The adult stage was the uppermost sensitive stage for adult diapause induction, adults could go into diapause only when the emerging adults were under diapause-inducing short-day photoperiods. The short-day photoperiodic experience by transferring between 15L: 9D and 9L: 15D at preimaginal stages did not result in adult diapause under 15L: 9D photo regime, although some treatments extended the pre-oviposition period in adult stage. The results showed that the 3rd instar larvae and pre-pupae were more sensitive to the photoperiodic change from 15L: 9D to 9L: 15D photo regime than the other preimaginal stages.  相似文献   

7.
Adults of the cabbage beetle Colaphellus bowringi display a summer diapause in response to the exposure of their larvae to long photoperiods. In the present study, the inheritance of the photoperiodic response controlling summer diapause in C. bowringi by crossing a high diapause strain (D strain) with a laboratory selected nondiapause strain (N strain) was investigated under different photoperiods at 22, 25 and 28 °C. The beetles in both reciprocal crosses and backcrosses showed a clear short-day response for the induction of diapause at all temperatures, similar to that of the D strain, suggesting that photoperiodic response of this beetle is heritable. The diapause incidences in the progeny from all the crosses under LD 15:9 or LD 12:12 at 25 °C suggest that genetic and genetic-environmental interactions are involved in diapause induction. The incidence of diapauses in F1 progeny was significantly lower than that in the D × D strain but significantly higher than that in the N × N strain, indicating that the diapause capability is inherited in an incomplete dominant manner. The incidence of diapause was greater among the offspring of hybrid females when those females had a D strain mother or grandmother rather than a N strain mother or grandmother, indicating that maternal effects on diapause induction are stronger than paternal effects. The laboratory selected nondiapause strain also showed a short-day photoperiodic response at a low temperature of 22 °C, indicating that the photoperiodic photoreceptor and photoperiodic clock still function in the nondiapause strain.  相似文献   

8.
Abstract. Insects and mites may measure photoperiods eitfier by classifying them as long or short relative to a critical value (qualitative time measurement) or by using the absolute value (quantitative time measurement). The spider mite Tetranychus urticae is thought to use a qualitative mechanism of time measurement. In this paper we present the results of experiments with an inbred line of the spider mite (to keep genetic variation in photoperiodic responses small), to test whether quantitative aspects also play a role. Differences in diapause incidence in different long-night photoperiods at different temperatures may be an indication of quantitative responses to photoperiod. The effect of temperature on the photoperiodic response curve was studied at 16oC, 19oC and 22oC. The response curves appeared to be similar at 16oC and 19oC, with a critical nightlength between 10 and 11 h. At 22oC, diapause induction was less than 100% in all long-night regimens and die critical nightlength had shifted to 12 h. Maximum diapause induction (93%) occurred in a light-dark cycle with a 16 h dark phase (LD 8:16 h). Diapause induction was lowest in long-night photoperiods with dark phases of 20 h and longer. The number of light-dark cycles needed for 50% diapause induction at 19oC varied. between 12.1 and 14.7 for LD 6:18 h, between 10.9 and 12.5 for LD 8:16 h, between 10.6 and 11.6 for LD 10:14 h, and between 10.1 and 10.7 for LD 12:12 h. Independent of die light-dark regimen, diapause induction took place in some individuals after receiving 8 cycles and virtually all individuals entered diapause after 16 cycles. No effect was found of the photoperiodic treatment during prediapause development (LD 6:18 h, LD 8:16 h, LD 10:14 h, LD 12:12 h) on diapause duration. The average diapause duration at LD 10:14 h and 19oC was 61 days over all four treatments. We explained the results by hypothesising that nightlengths are assessed qualitatively and mat the photoperiodic clock operates more accurately near the critical nightlength.  相似文献   

9.
The flesh fly Sarcophaga similis enters pupal diapause in response to short days, but averts diapause under long days. This species shows a sexual difference in the photoperiodic induction of diapause, with females having shorter critical daylength than males. Here, we proposed two hypotheses to explain this sexual difference. First, we proposed a sexual difference in the qualitative evaluation of photoperiods. This hypothesis assumes under the external coincidence model that although the photoinducible phase of both sexes locates at late scotophase, in males, it locates at a slightly earlier phase. However, the results of night interruption experiments clearly ruled out this hypothesis. Because we verified that S. similis evaluated photoperiods quantitatively, we next proposed a sexual difference in the quantitative evaluation of photoperiods. This hypothesis incorporates concepts of a hypothetical substance accumulation that shows a diapause‐inducing effect and an internal threshold that serves as a reference to determine the diapause/nondiapause developmental program. In long‐day exposure experiments and night interruption experiments, females consistently showed a lower incidence of diapause than males. Thus, the present study data satisfactorily meet the second hypothesis, that is a sexual difference in the quantitative evaluation of photoperiods exists in S. similis.  相似文献   

10.
Summary Neacoryphus bicrucis hibernates in the adult stage and exhibits a facultative reproductive diapause. Constant photoperiods of the durations encountered in the field do not evoke the diapause response but Shortening of the photoperiods does, providing the decrease in daylength is of a certain length and occurs within a certain photoperiodic interval. The sensitive stages are larval instars II to V. The percentage of diapausing bugs increases as temperature is lowered.It is suggested that the response to daylength shortening in N. bicrucis is an adaptation to ensure seasonal synchronization in a highly migratory species where successive generations may breed at different latitudes.  相似文献   

11.
Field experiments conducted in the environs of St. Petersburg (Russia) with a local population of Calliphora vicina showed that induction of larval diapause under natural conditions was significantly dependent on day lengths and temperature. The maternal photoperiodic response had a distinct threshold: the first diapausing larvae hatched from the eggs laid in the middle of August when the day length was 16 h; at shorter photoperiods, the fraction of diapausing larvae depended only on temperature. At the mean temperature of 16°C, larval diapause was rarely recorded; at 12–13°C, about 50% of the larvae entered diapause; at 7–9°C, nearly all the larvae entered diapause. These results of the field experiments agree well with the parameters of photoperiodic and thermal responses studied in the laboratory at constant temperatures and photoperiods.  相似文献   

12.
Photoperiodic induction of reproductive diapause at 18°C was investigated in fourOrius [Heteroptera: Anthocoridae] species.Orius insidiosus (Say) displayed a long-day response with a critical photoperiod between L11:D13 and L12:D12. Diapause in this species was terminated rapidly when the temperature and/or the daylength were increased.Orius majusculus (Reuter) also displayed a long-day response. The critical photoperiod fell between L14:D10 and L16:D8. Diapause in this species was not terminated within 14 days when both temperature and daylength were increased. InOrius albidipennis (Reuter) no diapause could be induced at photoperiods varying from L8:D16 to L16:D8. InOrius tristicolor (White) a high proportion of diapause was found at all photoperiods tested. The effect of temperature on photoperiodic induction of diapause was studied inO. insidiosus at L10:D14. Diapause occurred at 18°C, 21°C and 25°C, but not at 30°C. Again, diapause was terminated rapidly after transfer to 25°C/L16:D8. Exposing only the nymphal instars 1–5 to short daylength was not enough to induce diapause in the whole population ofO. majusculus. Orius predatory bugs are used as biocontrol agents against western flower thrips,Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidael, in greenhouses. The consequences of photoperiodic induction of diapause for the success of early season releases ofOrius are discussed.  相似文献   

13.
ABSTRACT. The interaction of photoperiod and temperature in the regulation of the induction and termination of the larval diapause of the Southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera), was examined. A population originating from south-eastern Missouri had critical daylengths for diapause induction of about 15h 5min (ecological threshold) and llh (physiological threshold). The ecological threshold was more stable than was the physiological threshold at temperatures lower than 25°C. Above 25°C the diapause response was suppressed. The insect appears to measure photoperiods in a stationary manner since a stepwise increase or decrease in photoperiod did not affect the incidence of diapause. In the critical region of the photoperiodic response curve, a higher incidence of diapause was found among females than among males. Females entered diapause later than did males, but resumed active development earlier than males. The rate of diapause development was more temperature dependent than was the rate of diapause induction, yet it was also clearly under photoperiodic control. The temperature coefficient (Q10) for this process was about 4. Several other factors including sex-linkage, age, and geographic adaptations are involved in controlling the rate of diapause development, even more so than they are in controlling diapause induction. In the laboratory, the intensity of diapause declined gradually without larvae being exposed to non-diapause inducing conditions. Incubation of field-collected larvae revealed that their sensitivity to diapause maintaining photoperiods had ended by January. Three generations of selection of a Mississippi population of D. grandiosella at 30°C and LD 12:12 led to the production of an essentially diapause-free strain and a diapause strain.  相似文献   

14.
Pupal diapause (dormancy) in the flesh fly, Sarcophaga bullata, is induced by short-day photoperiods and low temperature. In this study, the inheritance mode of diapause was investigated by crossing a nondiapausing (nd) strain of S. bullata with 2 diapausing strains having different diapause capacities. The results consistently indicated that diapause incidence is inherited in a simple Mendelian pattern, thus a single gene or a small gene cluster linked to the photoperiodic clock controls the seasonal response of diapause. The fact that the nd strain lacked daily rhythmicity in adult eclosion and showed altered expression of 2 circadian clock genes suggests that the photoperiodic and circadian clocks are related through a shared molecular component in S. bullata.  相似文献   

15.
To study the question whether photoperiodic time measurement in the spider mite Tetranychus urticae is based on a qualitative or quantitative principle, the duration of diapause development was determined in individual females at various constant photoperiods at 19 degrees C. Diapause duration at all four long-night treatments fluctuated around 64.5 days, varying from 62.2 at LD 12:12h to 66.4 at LD 10:14h. The within-treatment variation in diapause duration of the long-night groups appeared to be significantly correlated to the nightlength of the photoperiods used; the longer the nightlength, the higher the within-treatment variation. Frequency distributions of females completing diapause under the two regimes with nightlengths near the critical nightlength were skewed to the right. Mean diapause durations at these regimes, LD 13:11h and LD 14:10h, were 25.4 and 11.9 days, respectively. Mites completed diapause rapidly and synchronously under the three short-night photoperiods tested; within two weeks after transfer from cold storage at 4 degrees C to the diapause terminating regimes at 19 degrees C all females started reproduction. Mean diapause durations were 8.1, 6.4 and 6.5 days for the short-night treatments LD 15:9h, LD 17:7h and LD 19:5h, respectively. The coefficients of variation of diapause duration (variability within groups relative to the mean) of the short-night and the long-night groups varied from 18 to 42%; the coefficients of the two intermediate groups were 69and 81%. There was a clear difference in diapause duration between long-night and short-night groups, but no significant difference was present in this characteristic between different long-night groups on the one hand and only a small difference between different short-night groups on the other. These results support the hypothesis that photoperiodic time measurement in the spider mite is based on a qualitative principle; photoperiods are classified as either 'long' or 'short' in relation to a 'critical' photoperiod. However, around the critical nightlength, intermediate responses were observed which might hint at the quantitative nature of the underlying mechanism. Therefore, although most results are in agreement with the hypothesis of a qualitative mechanism, it cannot be excluded that photoperiodic time measurement in the spider mite is based on a quantitative principle.  相似文献   

16.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

17.
Abstract In order to elucidate the mechanism regulating its seasonal life cycle, the photoperiodic response of Achaearanea tepidariorum has been analysed. Nymphal development was faster in long-day and slower in short-day photoperiods. The combined action of low temperature, poor food supply and short daylength induced diapause at an earlier developmental stage than short days alone. Thus, photoperiod is a primary factor inducing nymphal diapause, but the diapausing instar is influenced by both temperature and food supply. Hibernating nymphs became unresponsive to photoperiod in late December. After hibernation, however, sensitivity was restored and the nymphs remained sensitive to photoperiod throughout their life. This spider could also enter an imaginal or reproductive diapause. Photoperiod was again a primary inducing factor and temperature modified the photoperiodic response to some extent. The induction of the reproductive diapause was almost temperature-compensated whereas development was not. So the involvement of a photoperiodic counter system was suggested. Irrespective of whether the nymph had experienced diapause or not, the imaginal diapause was induced in response to a short-day photoperiod after adult moult. Based on these observations, the seasonal life cycle and the adaptive significance of nymphal and imaginal diapause are discussed.  相似文献   

18.
The Asian corn borer Ostrinia furnacalis (Guenée) enters facultative diapause as fully‐developed larvae in response to short‐day conditions. As a consequence of geographical variation in photoperiodic response, moths from Nanchang (28°46′N, 115°50′E) enter diapause in response to short day‐lengths (D strain), even at the high temperatures whereas moths from Ledong (18°47′N, 108°89′E) exhibit almost no diapause under the same conditions (N strain). In the present study, crosses between the two strains are used to evaluate the inheritance of diapause under different photoperiods at temperatures of 22, 25 and 28 °C. The moths, both reciprocal crosses and backcrosses, show a clear long‐day response, similar to that of the D strain, suggesting that the photoperiodic response controlling diapause in this moth is heritable. However, the critical day‐length for induction of diapause is shorter in hybrids than in the D strain. The N strain also shows a short‐day photoperiodic response at the lower temperature of 22 °C, indicating that the N strain still has the capacity to enter a photoperiodically‐induced diapause, depending on the rearing temperature. The incidence of diapause in all crosses is highest with D strain fathers or grandfathers and lowest with N strain fathers or grandfathers, indicating that the male parent has significantly more influence on the incidence of diapause of subsequent progeny than the female. The results obtained from all crosses under LD 12 : 12 h or LD 13 : 11 h photocycles at 25 °C show that inheritance of diapause in O. furnacalis does not fit an additive hypothesis and that the capacity for diapause is transmitted genetically in the manner of incomplete dominance.  相似文献   

19.
Abstract The Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) diapauses as a last‐instar (fifth) larva. At 30 °C, no larvae enter diapause under any photoperiodic conditions; at 25 °C, the photoperiodic response curve is a long‐day type with a critical length of approximately 13 h light; at 20 °C, diapause is induced moderately even under long days (> 13 h). Cumulative effects of short days or long days on diapause induction are determined by alternate, stepwise and gradually changing regimes of photoperiod at 25 °C. When the larvae are repeatedly exposed to LD 16 : 8 h and LD 12 : 12 h photoperiods every other day, the incidence of diapause is 37%. When the larvae are placed under an LD 16 : 8 h photoperiod for 2 days and then under an LD 12 : 12 h photoperiod for 1 day, it is 38 %. Exposure to an LD 16 : 8 h photoperiod for 1 day and then to an LD 12 : 12 h photoperiod for 2 days induces only 15% diapause. This may indicate that the photoperiodic information is not accumulated in a simple fashion despite the generally accepted hypothesis (i.e. photoperiodic counter). Larvae exposed to an LD 16 : 8 h photoperiod for 5 days after oviposition express a very high incidence of diapause even under short days between an LD 2 : 22 h and LD 12 : 12 h photoperiod. After 10 days exposure to an LD 16 : 8 h photoperiod, however, the short day does not induce diapause strongly. On the other hand, an LD 12 : 12 h photoperiod in the early larval life is highly effective in the induction of diapause. A gradual increase or decrease of photoperiod (2 min day?1) shows that the direction of photoperiodic change does not affect the diapause determination.  相似文献   

20.
Wu SH  Yang D  Lai XT  Xue FS 《Journal of insect physiology》2006,52(11-12):1095-1104
The seasonal life cycle of the zygaenid moth, Pseudopidorus fasciata is complicated by two different developmental arrests: a winter diapause as a fourth larval instar and a summer diapause as a prepupa in a cocoon. Both larval diapause induction and termination are under photoperiodic control. Short days induce larval diapause with a critical daylength of 13.5h and long days terminate diapause with a critical daylength of 14h. In the present study photoperiodic control of summer diapause was investigated in Pseudopidorus fasciata. Under long photoperiods ranging from LD 14:10 to LD 18:6, only part of the population entered summer diapause, the rest continued to develop. The lowest number of prepupae entered diapause at LD 14:10, followed by LD 16:8 and LD 17:7. The highest incidence of diapause occurred with photoperiods of LD 15:9 and LD 18:6. By transferring the diapausing prepupae induced by various long photoperiods (LD 14:10, LD 15:9, LD 16:8, LD 17:7, LD 18:6) to LD 13:11, 25 degrees C, the duration of diapause induced by LD 14:10 was significantly shorter than those induced by longer photoperiods. By keeping aestivating prepupae induced by LD 15:9, 28 degrees C or by natural conditions at short photoperiods (LD 11:13 and LD 13:11) and at a long photoperiod (LD 15:9), the duration of diapause at LD 15:9 was more than twice as long as than those at LD 11:13 and LD 13:11. Moreover, adult emergence was highly dispersed with a high mortality at LD 15:9 but was synchronized with low mortality at LD 11:13 and LD 13:11. When the naturally induced aestivating prepupae were kept under natural conditions, the early aestivating prepupae formed in May exhibited a long duration of diapause (mean 126 days), whereas the later-aestivating prepupae formed in July exhibited a short duration of diapause (mean 69 days). These results indicate that aestivating prepupae require short or shortening photoperiod to terminate their diapause successfully. By transferring naturally induced aestivating prepupae to 25, 28 and 30 degrees C, the duration of diapause at the high temperature of 30 degrees C was significantly longer than those at 25 and 28 degrees C, suggesting that high temperature during summer also plays an important role in the maintenance of summer diapause in Pseudopidorus fasciata. All results reveal that summer diapause can serve as a "bet hedging" against unpredictable risks due to fluctuating environments or as a feedback mechanism to synchronize the period of autumn emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号