首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress.  相似文献   

2.
We have produced the B subunit of the enterotoxigenic Escherichia coli (ETEC) heat-labile enterotoxin (LT-B) in transgenic maize seed. LT-B is a model antigen that induces a strong immune response upon oral administration and enhances immune responses to conjugated and co-administered antigens. Using a synthetic LT-B gene with optimized codon sequence, we examined the role of promoters and the SEKDEL endoplasmic reticulum retention motif in LT-B accumulation in callus and in kernels. Two promoters, the constitutive CaMV 35S promoter and the maize 27 kDa gamma zein promoter, which directs endosperm-specific gene expression in maize kernels, regulated LT-B expression. Ganglioside-dependent ELISA analysis showed that using the constitutive promoter, maximum LT-B level detected in callus was 0.04% LT-B in total aqueous-extractable protein (TAEP) and 0.01% in R1 kernels of transgenic plants. Using the gamma zein promoter, LT-B accumulation reached 0.07% in R1 kernels. The SEKDEL resulted in increased LT-B levels when combined with the gamma zein promoter. We monitored LT-B levels under greenhouse and field conditions over three generations. Significant variability in gene expression was observed between transgenic events, and between plants within the same event. A maximum of 0.3% LT-B in TAEP was measured in R3 seed of a transgenic line carrying CaMV 35S promoter/LT-B construct. In R3 seed of a transgenic line carrying the gamma zein promoter/LT-B construct, up to 3.7% LT-B in TAEP could be detected. We concluded that maize seed can be used as a production system for functional antigens.  相似文献   

3.
4.
Rice blast, caused by Magnaporthe grisea, is the most important fungal disease of cultivated rice worldwide. We have developed a strategy for creating disease resistance to M. grisea whereby pathogen-induced expression of the afp (antifungal protein) gene from Aspergillus giganteus occurs in transgenic rice plants. Here, we evaluated the activity of the promoters from three maize pathogenesis-related (PR) genes, ZmPR4, mpi, and PRms, in transgenic rice. Chimeric gene fusions were prepared between the maize promoters and the beta-glucuronidase reporter gene (gus A). Histochemical assays of GUS activity in transgenic rice revealed that the ZmPR4 promoter is strongly induced in response to fungal infection, treatment with fungal elicitors, and mechanical wounding. The ZmPR4 promoter is not active in the seed endosperm. The mpi promoter also proved responsiveness to fungal infection and wounding but not to treatment with elicitors. In contrast, no activity of the PRms promoter in leaves of transgenic rice was observed. Transgenic plants expressing the afp gene under the control of the ZmPR4 promoter were generated. Transformants showed resistance to M. grisea at various levels. Our results suggest that pathogen-inducible expression of the afp gene in rice plants may be a practical way for protection against the blast fungus. Most agricultural crop species suffer from a vast array of fungal diseases that cause severe yield losses all over the world. Rice blast, caused by the fungus Magnaporthe grisea (Herbert) Barr (anamorph Pyricularia grisea), is the most devastating disease of cultivated rice (Oryza sativa L.), due to its  相似文献   

5.
Commercial production of aprotinin in transgenic maize seeds   总被引:7,自引:0,他引:7  
The development of genetic transformation technology for plants has stimulated an interest in using transgenic plants as a novel manufacturing system for producing different classes of proteins of industrial and pharmaceutical value. In this regard, we report the generation and characterization of transgenic maize lines producing recombinant aprotinin. The transgenic aprotinin lines recovered were transformed with the aprotinin gene using the bar gene as a selectable marker. The bar and aprotinin genes were introduced into immature maize embryos via particle bombardment. Aprotinin gene expression was driven by the maize ubiquitin promoter and protein accumulation was targeted to the extracellular matrix. One line that showed a high level of aprotinin expression was characterized in detail. The protein accumulates primarily in the embryo of the seed. Southern blot analysis showed that the line had at least 20 copies of the bar and aprotinin genes. Further genetic analysis revealed that numerous plants derived from this transgenic line had a large range of levels of expression of the aprotinin gene (0–0.069%) of water-soluble protein in T2 seeds. One plant lineage that showed stable expression after 4 selfing generations was recovered from the parental transgenic line. This line showed an accumulation of the protein in seeds that was comparable to the best T2 lines, and the recombinant aprotinin could be effectively recovered and purified from seeds. Biochemical analysis of the purified aprotinin from seeds revealed that the recombinant aprotinin had the same molecular weight, N-terminal amino acid sequence, isoelectric point, and trypsin inhibition activity as native aprotinin. The demonstration that the recombinant aprotinin protein purified from transgenic maize seeds has biochemical and functional properties identical to its native counterpart provides a proof-of-concept example for producing new generation products for the pharmaceutical industry.  相似文献   

6.
7.
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.  相似文献   

8.
Summary The PRms protein is a pathogenesis-related (PR)-like protein whose mRNA accumulates during germination of maize seeds. Expression of the PRms gene is induced after infection of maize seeds with the fungus Fusarium moniliforme. To further our investigations on the expression of the PRms gene we examined the accumulation of PRms mRNA in different tissues of maize seedlings infected with E. moniliforme and studied the effect of fungal elicitors, the mycotoxin moniliformin, the hormone gibberellic acid, and specific chemical agents. Our results indicate that fungal infection, and treatment either with fungal elicitors or with moniliformin, a mycotoxin produced by F. monilforme, increase the steady-state level of PRms mRNA. PRms mRNA accumulation is also stimulated by the application of the hormone gibberellic acid or by treatment with silver nitrate, whereas acetylsalicylic acid has no effect. In situ RNA hybridization in isolated germinating embryo sections demonstrates that the PRms gene is expressed in the scutellum, particularly in a group of inner cells, and in the epithelium lying at the interface of the scutellum and the endosperm. The pattern of expression of the PRms gene closely resembles that found for hydrolytic enzymes, being confined to the scutellum and the aleurone layer of the germinating maize seed. Our results suggest that the PRms protein has a function during the normal process of seed germination that has become adapted to serve among the defence mechanisms induced in response to pathogens during maize seed germination.  相似文献   

9.
Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.  相似文献   

10.
Ethanol from lignocellulosic biomass is being pursued as an alternative to petroleum-based transportation fuels. To succeed in this endeavour, efficient digestion of cellulose into monomeric sugar streams is a key step. Current production systems for cellulase enzymes, i.e. fungi and bacteria, cannot meet the cost and huge volume requirements of this commodity-based industry. Transgenic maize ( Zea mays L.) seed containing cellulase protein in embryo tissue, with protein localized to the endoplasmic reticulum, cell wall or vacuole, allows the recovery of commercial amounts of enzyme. E1 cellulase, an endo-β-1,4-glucanase from Acidothermus cellulolyticus , was recovered at levels greater than 16% total soluble protein (TSP) in single seed. More significantly, cellobiohydrolase I (CBH I), an exocellulase from Trichoderma reesei , also accumulated to levels greater than 16% TSP in single seed, nearly 1000-fold higher than the expression in any other plant reported in the literature. The catalytic domain was the dominant form of E1 that was detected in the endoplasmic reticulum and vacuole, whereas CBH I holoenzyme was present in the cell wall. With one exception, individual transgenic events contained single inserts. Recovery of high levels of enzyme in T2 ears demonstrated that expression is likely to be stable over multiple generations. The enzymes were active in cleaving soluble substrate.  相似文献   

11.
A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.  相似文献   

12.
Fusarium verticillioides is an important fungus occupying dual roles in the maize plant. The fungus functions as an endophyte, a fungal/host interaction beneficial to the growth of some plants. At other times, the fungus may function as a mycotoxin producing pathogen. The advantages and/or disadvantages of the endophytic relationship must be established in order to target appropriate sites for controlling diseases and mycotoxins in maize. One possibility could be to ensure seed maize is fungal free prior to planting. Reciprocal inoculations were made with two fungal isolates on seed of two maize genotypes. Yield was measured at harvest by ear and seed characters and vegetative growth at one-month intervals for plant survival, height, weight and stem diameter. Yield and vegetative growth differed among mature plants only once based on seed inoculation status. In 1998, plant weight was reduced and seed weight per ear was increased for the dent maize, GT-MAS: gk, grown from F. verticillioides RRC 374- inoculated seed compared to other seed treatments. Most vegetative characters were reduced at the first collection for Silver Queen plants grown from F. verticillioides-inoculated seed in 1997 and 1999, but not in 1998. However, no significant differences occurred among mature Silver Queen plants during any of the three growing seasons. In conclusion, yield and vegetative growth of mature maize plants grown from F. verticillioides-inoculated seed were equal to or greater than plants grown from non-inoculated seed under south Georgia field conditions during 1997, 1998, and 1999.  相似文献   

13.
To test the feasibility of altering polyamine levels by influencing their catabolic pathway, we obtained transgenic tobacco (Nicotiana tabacum) plants constitutively expressing either maize (Zea mays) polyamine oxidase (MPAO) or pea (Pisum sativum) copper amine oxidase (PCuAO), two extracellular and H(2)O(2)-producing enzymes. Despite the high expression levels of the transgenes in the extracellular space, the amount of free polyamines in the homozygous transgenic plants was similar to that in the wild-type ones, suggesting either a tight regulation of polyamine levels or a different compartmentalization of the two recombinant proteins and the bulk amount of endogenous polyamines. Furthermore, no change in lignification levels and plant morphology was observed in the transgenic plants compared to untransformed plants, while a small but significant change in reactive oxygen species-scavenging capacity was verified. Both the MPAO and the PCuAO tobacco transgenic plants produced high amounts of H(2)O(2) only in the presence of exogenously added enzyme substrates. These observations provided evidence for the limiting amount of freely available polyamines in the extracellular space in tobacco plants under physiological conditions, which was further confirmed for untransformed maize and pea plants. The amount of H(2)O(2) produced by exogenously added polyamines in cell suspensions from the MPAO transgenic plants was sufficient to induce programmed cell death, which was sensitive to catalase treatment and required gene expression and caspase-like activity. The MPAO and PCuAO transgenic plants represent excellent tools to study polyamine secretion and conjugation in the extracellular space, as well as to determine when and how polyamine catabolism actually intervenes both in cell wall development and in response to stress.  相似文献   

14.
 Calli and cell suspensions were obtained from tobacco plants transformed with an endochitinase-encoding cDNA from the biocontrol fungus Trichoderma harzianum. Calli from four primary transformants had high levels of endochitinase activity, like the plants from which they were derived. Endochitinase activity was also detected in the medium surrounding the calli and in the medium from transgenic cell suspensions. Western blots demonstrated the presence of the expected 40-kDa T. harzianum protein in transgenic samples but not in controls. These results indicate that the fungal enzyme is secreted and that the fungal signal peptide in the cDNA construct functions in plant cells. A cell suspension medium in which the protein concentration was increased up to 34-fold by ammonium sulfate precipitation inhibited germination of Penicillium digitatum spores. Some inhibition of spore germination was also observed in concentrated medium from control suspensions, probably due to the secretion and concentration of endogenous enzymes. Received: 6 May 2000 / Revision received: 6 September 2000 · Accepted: 14 September 2000  相似文献   

15.
Efficient and reproducible selection of transgenic cells is an essential component of a good transformation system. In this paper, we describe the development of glyphosate as a selective agent for the recovery of transgenic embryogenic corn callus and the production of plants tolerant to Roundup® herbicide. Glyphosate, the active ingredient in Roundup® herbicide inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and thus prevents the synthesis of chorismate-derived aromatic amino acids and secondary metabolites in plants. A maize EPSPS gene has been cloned, mutated to produce a modified enzyme resistant to inhibition by glyphosate, and engineered into a monocot expression vector. In addition, a bacterial gene which degrades glyphosate (glyphosate oxidoreductase, or GOX) was also cloned into a similar expression vector. Stably transformed callus has been reproducibly recovered following introduction of mutant maize EPSPS and GOX genes into tissue culture cells by particle bombardment and selection on glyphosate-containing medium. Plants have been regenerated both on and off glyphosate selection medium, and are tolerant to normally lethal levels of Roundup®. Excellent seed set has been obtained from both self and outcross pollinations from both sprayed and unsprayed regenerated plants. Progeny tests have demonstrated normal Mendelian transmission and tolerance to the herbicide for some of the transgenic events.  相似文献   

16.
17.
18.
19.
We have produced in transgenic maize seed the glycoprotein, avidin, which is native to avian, reptilian, and amphibian egg white. A transformant showing high-level expression of avidin was selected. Southern blot data revealed that four copies of the gene are present in this transformant. The foreign protein represents >2% of aqueous soluble extracted protein from populations of dry seed, a level higher than any heterologous protein previously reported for maize. In seed, greater than 55% of the extractable transgenic protein is present in the embryo, an organ representing only 12% of the dry weight of the seed. This indicates that the ubiquitin promoter which is generally considered to be constitutive, in this case may be showing a strong tissue preference in the seed. The mature protein is primarily localized to the intercellular spaces.An interesting trait of the transgenic plants expressing avidin is that the presence of the gene correlates with partial or total male sterility. Seed populations from transgenic plants were maintained by outcrossing and segregate 1:1 for the trait. In generations T2–T4, avidin expression remained high at 2.3% (230 mg/kg seed) of extractable protein from seed, though it varied from 1.5 to 3.0%. However, levels of expression did not appear to depend on pollen parent or growing location. Cracked and flaked kernels stored at –29°C or 10 °C for up to three months showed no significant loss of avidin activity. Commercial processing of harvested seed also generated no apparent loss of activity. The protein was purified to greater than 90% purity by affinity chromatography after extraction from ground mature maize seed. Physical characterization of purified maize-derived avidin demonstrated that the N-terminal amino acid sequence and biotin binding characteristics are identical to the native protein with near identical molecular weight and glycosylation. This study shows that producing avidin from maize is not only possible but has practical advantages over current methods.  相似文献   

20.
A research was carried out to evaluate the influence of temperature on seed respiration response of maize, cotton, grain sorghum and sunflower during imbibition, and to define reliable indices for a fast evaluation of cold-sensitivity at germination level in plants. The seed respiration activity was measured during seed imbibition at 25 °C (optimal) and 15 °C (suboptimal) constant temperatures, using a homemade respiration chamber adapted to an infrared gas analyzer. At 15 °C, sunflower and sorghum maintained high levels of seed germination (≥90 %), whilst this last dropped in cotton (36.7 %) and maize (27.8 %). With respect to this, cotton and maize seem to be cold sensitive during germination. Instantaneous seed respiration during imbibition versus temperature or thermal time could not be used as a good indicator for cold tolerance, since the levels of CO2 recorded at 15 °C in cotton (higher than the other species) and maize (similar to that of sorghum and sunflower) did not correspond to adequate seed germination. Differently, the rates (b coefficient of linear regressions) of accumulation of CO2 respired at optimal and suboptimal temperatures during the first hours of imbibition (up to approximately 24 h from the start of experiment), were significantly different in maize and cotton, whilst they did not differ in sorghum and sunflower. Therefore, the shift between slopes may represent a reliable index for seed cold-sensitivity assessment during early germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号