首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activities of the iron complexes of evolutionary importance like K4[Fe(CN)6], K4[Fe(CN)5(gly)], and K4[Fe(CN)5(trigly)] have been tested towards some redox reactions of biological significance, namely, decomposition of hydrogen peroxide, dehydrogenation of NADH and ascorbic acid both coupled with reduction of methylene blue. It has been observed that the catalytic activities of iron (II) complexes towards the redox reactions studied at pH 9.18 followed the order, K4[Fe(CN)6]4[Fe(CN)5(gly)]4[Fe(CN)5(trigly)]. Decomposition of H2O2 catalysed by cyanocomplexes of iron (II) has been discussed through the formation of an innersphere complex in which loosly bound ligands like, glycine and triglycine are replaced by hydroperoxide ion. A tentative mechanism for the catalysed decomposition of H2O2 has been discussed.Based upon the experimental observations a hypothesis on the evolution of iron containing enzymes has been envisaged as: iron(II) ion iron(II) cyanide complexes mixed ligand iron(II) cyanide and amino acid complexes iron(II) complexes of macromolecules proenzyme or early enzyme containing iron(II).  相似文献   

2.
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode.  相似文献   

3.
4.
Due to ease of formation of cyanide under prebiotic conditions, cyanide ion might have formed stable complexes with transition metal ions on the primitive earth. In the course of chemical evolution insoluble metal cyano complexes, which settled at the bottom of primeval sea could have formed peptide and metal amino acid complexes through adsorption processes of amino acids onto these metal cyano complexes.Adsorption of amino acids such as glycine, aspartic acid, and histidine on copper ferrocyanide and zinc ferrocyanide have been studied over a wide pH range of 3.6 – 8.5. Amino acids were adsorbed on the metal ferrocyanide complexes for different time periods. The progress of the adsorption was followed spectro-photometrically using ninhydrin reagent. Histidine was found to show maximum adsorption on both the adsorbents at neutral pH. Zinc ferrocyanide exhibits good sorption behaviour for all the three amino acids used in these investigations.  相似文献   

5.
Summary Copper(II) complexes CuL1L2 with the ligand pairs 3-phosphoglycerate (PG)/ethylenediamine (en), phosphoserine (PS)/ethylenediamine, phosphoserine/malonate (mal) are shown to be effective in inducing the release of both iron atoms from di-ferric transferrin (Fe2Tf; human serum transferrin) at pH 7.3 in 1 M NaCl at 25°C. Half-times of the reaction with Cu(PG)(en) were less than 1 min at 0.02 M concentration. The iron(III) products are polynuclear hydroxo complexes. There is weaker interaction with Cu(PS) 2 4– and virtually none with Cu(serine)(en) nor Cu(PS)(2,2-bipyridyl), revealing crucial effects of the combined ligand sphere including the phosphomonoester group. The results suggest that the release of iron from Fe2Tf, or from either monoferric transferrins, occurred due to the breakdown of the stability of iron binding in conjunction with the expulsion of the synergistic anion carbonate (or oxalate). The active copper(II) complexes are postulated to be models of membrane components that could liberate iron from transferrin succeeding its uptake at the receptor sites of cells.Abbreviations PG phosphoglycerate - PS phosphoserine - en ethylenediamine - Fe2Tf diferric transferrin - FecTf and FeNTf transferrin with iron bound to the lobe containing the C- or N-terminus, respectively - apoTf apotransferrin - K-3 all-cis-1,3,5-tris(trimethylammonio)-2,4,6-cyclo-hexanetriol - NTA nitrilotriacetic acid; bipy, 2,2-bipyridine; mal, malonate  相似文献   

6.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

7.
Acenaphtheno[1,2-b]-1,4,8,9-tetraazatriphenylene (atatp) and its complexes [Ru(L)2atatp](ClO4)2 x nH2O (L = 2,2'-bipyridine (bpy), n=2 (1); 1,10-phenanthroline (phen), n=2 (2); and 2,9-dimethyl-1,10-phenanthroline (dmp), n=1 (3)) have been synthesized and characterized by elemental analyses and 1H NMR. The spectral and electrochemical properties of these complexes are also examined. Complexes 1 and 2 display bright luminescence in acetonitrile but very weak luminescence in water solution. However, complex 3 is not luminescent in either solvent. The interaction of the complexes with calf thymus DNA (CT-DNA) has been studied by absorption, emission and viscosity measurements. The intrinsic binding constants of complexes 1 and 2 are 7.6 x 10(4) and 8.8 x 10(4) M(-1) respectively. The relatively low affinities of complexes 1 and 2 with DNA may arise from the atatp ligand, indicating that the size and shape of the intercalated ligand have a marked effect on the strength of interaction. Complexes 1 and 2 bind with CT-DNA in an intercalative mode but complex 3 in a non-intercalative one, showing that changing the ancillary ligand affects not only the binding magnitude, but also the binding mode of the interaction.  相似文献   

8.
The chiral bis(pyridylimino)isoindoline derivative 5 (pinBPI) was prepared from the chiral pool reagent α-pinene 1 in three steps and an overall yield of 12%. Upon treatment with palladium(II) acetate and palladium(II) chloride, pinBPI 5 forms the nonracemic chiral complexes [(pinBPI)Pd(OAc)] 6 and [(pinBPI)PdCl] 7, respectively, as the only isolated species in good yield. The synthesis of a related thiazole-based ligand failed for the incompatibility of the four-membered carbocycle of the pinene subunit with the conditions of the thiazole-forming reaction. Both pinBPI chelates crystallize in chiral space groups but with different molecular conformations and intermolecular interactions. A triclinic system with space group P1 is found for the acetato derivative 6 which organizes pseudosymmetrically as a chloroform solvate with one helical and one (almost) planar molecule in the asymmetric unit. The chloro derivate 7 on the other hand crystallizes in the monoclinic space group P21 with Z = 8 and four independent molecules in the unit cell. Here, all molecules are in a pseudoplanar configuration with convex ligand conformations, but differ significantly in bond lengths and angles. The structures unravel two different possible scenarios for intermolecular association of such chiral BAI ligands.  相似文献   

9.
Four pentadentate iron(II) complexes containing non- or fluoro-substituted phenyl group (2b-2e) were synthesized and cleaving activity of them to pUC19 DNA was evaluated in the presence of hydrogen peroxide. DNA cleavage activity increased with the number of substituted fluorine atoms on the phenyl group of 2b.  相似文献   

10.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

11.
Two novel palladium(II) complexes with a thiosalicylic acid (HSC6H4CO2H) ligand, with the formulas [Pd(TSA)(L)]·mH2O (TSA is thiosalicylic acid; in complex 1, L is 1,10-phenanthroline and m = 1; in complex 2, L is 2,2′-bipyridine and m = 2), have been synthesized and characterized. The coordination geometry of both palladium atoms is square planar; they are four-coordinated and each is coordinated in an N,N,O,S mode. There is a sigmoid oxygen chain in complex 1, but an oxygen ring in complex 2. The competitive binding of the complexes to HeLa cell DNA (HL-DNA) has been investigated by fluorescence spectroscopy. The results show that the two complexes have the ability to bind with HL-DNA. Viscosity studies suggest that the complexes bind to DNA by intercalation. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the HL-DNA. The two complexes exhibit cytotoxic specificity and a significant cancer cell inhibitory rate. The apoptosis tests indicated that the complexes have an apoptotic effect. Furthermore, complex 1 exhibits more biological activity than complex 2, which is mainly because the area of the aromatic ring of 1,10-phenanthroline is larger than that of 2,2′-bipyridine.  相似文献   

12.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

13.
The reactions of heme, [OEPFeCl] where OEP is the dianion of octaethylporphyrin, with phenylcyanamide (pcyd) ligands have been studied. Four new porphyrin complexes, [OEPFe(L)] (L = pcyd (2), 2-Clpcyd (3), 2-Mepcyd (4), 2,4-Me2pcyd (5)), have been isolated and characterized by spectroscopic methods. 1H NMR spectroscopy reveals that the species [OEPFe(L)] are paramagnetic and iron is five-coordinate. The structure of [OEPFe(pcyd)] (2) has been determined by X-ray diffraction analysis. The four Fe-N, bond distances have average values of 2.062 Å. The average displacement of the iron(III) atom from the mean porphinato core is 0.45 Å. Electrochemical of [OEPFe(L)] (L = pcyd (2), 2-Clpcyd (3), 2-Mepcyd (4), 2,4-Me2pcyd (5)) have been studied by cyclic voltammetry.  相似文献   

14.
The trihydrochloride salt of tris(2-aminoethyl)methane (tram·3HCl) was deprotonated in methanolic potassium hydroxide and reacted with three molar equivalents of imidazole-2-carboxaldehyde to give a new Schiff base ligand, HC(CH2CH2NCH-2ImH)3. The ligand, H3(1), was reacted in situ with iron(II)chloride tetrahydrate. Addition of excess sodium perchlorate resulted in the isolation of the dark red [FeH3(1)](ClO4)2·KClO4. The neutral emerald green iron(III) tripodal complex, Fe(1), was prepared by the aerial oxidation of the iron (II) complex on addition of three equivalents of potassium hydroxide. The complexes are characterized by EA, IR, ESI-MS, Mössbauer, magnetic susceptibility and single crystal XRD. The spectroscopic and structural data support a low spin assignment for both the iron(II) and iron(III) complexes at 295 K. The overall conformation of the tram backbone in these complexes has the apical carbon atom, Cap, pointed away from the iron atom with an average non-bonded distance of 3.83 Å. However, Cap is distorted from tetrahedral geometry toward trigonal monopyramidal. This is indicated by a narrowing of the H-Cap-C angles, an expansion of the C-Cap-C angles and a compression along the C-H axis so that Cap approaches the plane defined by its three carbon substituents. Two unusual supramolecular features are exhibited in [FeH3(1)](ClO4)2·KClO4. These are a polymeric [K(ClO4)32−]n anion and a bidentate hydrogen bonding donor, NimineCH-Cimidazole-NimidazoleH, on each arm of the tripodal ligand. Density Functional Theory (DFT) calculations using the B3LYP functional were performed on the low spin and high spin states of both complexes. B3LYP correctly predicts that the low spin state is favored in both systems and closely matches the important metrical parameters that are indicative of spin state. B3LYP shows that the Cap-out conformation of the tram backbone would be nearly identical in the low and high spin forms.  相似文献   

15.
Two mixed ligand complexes [Ru(bpy)(2)(DMHBT)]Cl(2)(1) and [Ru(phen)(2)(DMHBT)]Cl(2) (2) (where DMHBT is 11,13-dimethyl-13H-4,5,9,11,14-hexaaza-benzo[b]triphenylene-10,12-dione) have been synthesized and characterized by electrospray ionization (ESI) mass, (1)H-(1)H correlation spectroscopy (COSY), electronic spectroscopy, fluorescence spectroscopy and cyclic voltammetry. Spectroscopic titration and viscosity changes of calf thymus (CT)-DNA in the presence of incremental amount of complexes 1 and 2 clearly demonstrate that both these complexes bind intercalatively to DNA, with binding constant 2.87+/-0.20 x 10(4)M(-1) and 1.01+/-0.20 x 10(5)M(-1) for complexes 1 and 2, respectively. All the experimental evidences suggest that the ancillary ligand 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) influences the intercalative binding of these complexes to DNA.  相似文献   

16.
One 0D monomer trans-[Ni(pn)2(dca)2] (1), one neutral 2D polymer [Ni(pn)(dca)2]n (2) and one polycationic 1D polymer [Ni(pn)2(dca)]n(PF6)n (3) (pn = 1,3-propanediamine; dca = dicyanamide) have been synthesized and X-ray crystallographically characterized. 1 has terminal trans-Ni(dca)2 unit, 2 contains both double bridged Ni-(NCNCN)2-Ni and single bridged Ni-(NCNCN)-Ni units in alternate fashion and 3 consists of single Ni-(NCNCN)-Ni bridge by covalent bonds. The nickel(II) centers are six-coordinated with distorted octahedral geometry. Multiple lateral N-H···N, C-H···N, N-H···F and C-H···F hydrogen bondings promote dimensionality. Variable-temperature magnetic measurements indicate weak antiferromagnetic interactions through μ1,5 bridge(s).  相似文献   

17.
The water soluble polymer-copper(II) complex samples, [Cu(bpy)(2)(BPEI)]Cl(2).4H(2)O (bpy=2,2'-bipyridine, BPEI=branched polyethyleneimine), with varying degrees of copper(II) chelates content in the polymer chain, were prepared by ligand substitution method in water-ethanol medium and characterized by Infra-red, UV-visible, EPR spectral and elemental analysis methods. The interaction of these polymer-copper(II)-bipyridyl complex samples with calf thymus DNA has been explored by using electronic absorption spectroscopy, emission spectroscopy and gel electrophoresis techniques. The observed changes in the physico-chemical features of the polymer-copper(II) complex on binding to DNA suggest that the complex binds to DNA with electrostatic interaction mode. A sample of polymer-copper(II) complex was tested for its antibacterial and antifungal activity and it was found to have good antibacterial and antifungal activities.  相似文献   

18.
Nickel(II) complexes bearing a κ3SNS pincer ligand, 2,5-bis(benzylaminothiocarbonyl)pyrrolyl (L1) and a κ3SCS-pincer ligand, 2,6-bis(benzylaminothiocarbonyl)phenyl (L2), were synthesized, and their structures and electrochemical properties were elucidated. The crystal structures of [Ni(SNS)Br] (2) and [Ni(SCS)Br] (5) were determined by X-ray crystallography. The electrochemical and crystallographic data obtained from the complexes revealed that the κ3SCS ligand has a stronger electron-donating ability than the κ3SNS ligand.  相似文献   

19.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4 counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl).  相似文献   

20.
Two novel coordination polymeric complexes [Co(pzca)2(H2O)]n (1) and [Mn(pzca)2]n (2) (pzca=2-pyrazinecarboxylate) have been synthesized by hydrothermal reaction of M(CH3COO)2·4H2O (M=Co, Mn) and 2-pyrazinecarboxylic acid. The complex 1 displays an infinite zigzag chain structure in which each cobalt(II) center was coordinated by three nitrogen and three oxygen atoms to generate a CoN3O3 octahedral geometry. The existence of hydrogen bond leads to the formation of the interpenetrating stacking structure. Complex 2 indicates a two-dimensional layer structure through the linkage of bridging oxygen atom of pzca ligand. Each Mn(II) center exhibits a distorted octahedral coordination environment with four oxygen atoms and two nitrogen atoms. The distances of adjacent Mn(II) atoms are 3.503 and 5.654 Å, respectively. The magnetic property analyses reveal that both complexes show weak antiferromagnetic exchange interactions between the metal centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号