首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new nitrate assimilation-related genes, Nrt2;3 and Nar5, have been identified in Chlamydomonas reinhardtii. The Nrt2;3 gene is a new member of the Nrt2 family, encoding high-affinity nitrate (nitrite) transporters. Like that of the nitrate assimilation genes, expression of the Nrt2;3 gene is down-regulated by ammonium and positively controlled by Nit2, a regulatory locus specific for the pathway. The three Nrt2 genes of C. reinhardtii are differentially regulated by the nitrogen source. Expression of Nrt2;3 and of Nrt2;1, a nitrate/nitrite-bispecific transporter gene, was induced by nitrate and more efficiently by nitrite. Accumulation of mRNA of Nrt2;2, the nitrate-specific transporter gene, was only induced efficiently by nitrate. The Nar5 gene is located upstream of the Nrt2;3 genomic region and expression of its mRNA is down-regulated by ammonium. The Nrt2;3 and Nar5 genes are overexpressed in a deletion mutant that lacks nitrate assimilation loci.  相似文献   

2.
Two new loci have been found to be clustered with five other genes for the nitrate assimilation pathway in the Chlamydomonas reinhardtii genome. One gene, located close to the 3′-end of the high-affinity nitrate transporter (HANT) gene Nrt2;2, corresponds to the nitrite reductase (NiR) structural gene Nii1. This is supported by a number of experimental findings: (i) NiR-deficient mutants have lost Nii1 gene expression; (ii) Nii1 mRNA accumulation is co-regulated with the expression of other structural genes of the nitrate assimilation pathway; (iii) nitrite (nitrate) utilization ability is recovered in the NiR mutants by functional complementation with a wild-type Nii1 gene; (iv) the elucidated NII1 amino acid sequence is highly similar to that of the cyanobacterial and higher-plant enzyme, and contains the predicted domains for plastidic ferredoxin-NiRs. Thus, the mutant phenotype and the mRNA sequence and expression of the Nii1 gene have been unequivocally related. Accumulation of mRNA for the second locus identified, Lde1 (light-dependent expression), was not regulated by nitrogen, but like nitrate-assimilation clustered genes, its expression was down-regulated in the dark. Received: 27 November 1997 / Accepted: 19 January 1998  相似文献   

3.
4.
5.
6.
7.
Expression of the gene Nrt2Np, which encodes a putative high-affinity nitrate transporter of Nicotiana plumbaginifolia was studied under variable physiological conditions. Nrt2Np is rapidly induced by very low nitrate concentrations and repressed by reduced nitrogen metabolites. Furthermore, Nrt2Np is expressed in coordination with other genes involved in nitrate assimilation (Nia, Nii). A deficiency in nitrate reductase activity, which is accompanied by high internal nitrate concentration and low levels of nitrogen metabolites, e.g. glutamine, leads to an overexpression of Nrt2Np, showing that high nitrate concentration per se does not repress Nrt2Np expression. By investigating plants with altered nitrate uptake properties, we showed a correlation between Nrt2 mRNA accumulation and 15N nitrate influx rates, providing the first evidence that the expression of Nrt2 correlates with the rate of nitrate uptake. In situ hybridization revealed a tissue-specific expression pattern. Nrt2Np mRNA accumulation is localized throughout all layers of the root tip, being highest in epidermal and endodermal cells. However, in mature root tissue, Nrt2 expression was detected mainly in the lateral root primordia and in the epidermis.  相似文献   

8.
Plasmid DNA carrying either the nitrate reductase (NR) gene or the argininosuccinate lyase gene as selectable markers and the correspondingChlamydomonas reinhardtii mutants as recipient strains have been used to isolate regulatory mutants for nitrate assimilation by insertional mutagenesis. Identification of putative regulatory mutants was based on their chlorate sensitivity in the presence of ammonium. Among 8975 transformants, two mutants, N1 and T1, were obtained. Genetic characterization of these mutants indicated that they carry recessive mutations at two different loci, namedNrg1 andNrg2. The mutation in N1 was shown to be linked to the plasmid insertion. Two copies of the nitrate reductase plasmid, one of them truncated, were inserted in the N1 genome in inverse orientation. In addition to the chlorate sensitivity phenotype in the presence of ammonium, these mutants expressed NR, nitrite reductase and nitrate transport activities in ammonium-nitrate media. Kinetic constants for ammonium (14C-methylammonium) transport, as well as enzymatic activities related to the ammonium-regulated metabolic pathway for xanthine utilization, were not affected in these strains. The data strongly suggest thatNrg1 andNrg2 are regulatory genes which specifically mediate the negative control exerted by ammonium on the nitrate assimilation pathway inC. reinhardtii.  相似文献   

9.
10.
Summary A methylammonium-resistant mutant, named hereafter strain 2170 (ma-1), was isolated for the first time from a eukaryotic phototrophic organism. Mutant 2170 from Chlamydomonas reinhardtii carries a single mendelian mutation which results in a decreased rate of uptake of both ammonium and methylammonium without being affected either in uptake of nitrate or nitrite or any of the tested enzyme activities related to ammonium assimilation. Mutant cells could not use methylammonium as nitrogen source nor excrete ammonium into the medium but they had derepressed nitrate and nitrite reductases when growing in the presence of ammonium. Mutant 2170 also exhibited a diminished methylammonium transport rate in comparison with the wild-type cells. We conclude that mutant 2170 is affected in a transport system responsible for the entrance of both ammonium and methylammonium into the cells.Abbreviations CHES 2-(N-Cyclohexylamino)ethanesulphonic acid - MOPS 3(N-morpholine)propanesulphonic acid  相似文献   

11.
A number of Tn5 mutants were isolated which were unable to fix nitrogen and showed enhanced ammonium repression of the nitrate/nitrite assimilation genes. They also had reduced nitrate reductase activity under fully inducing conditions. Insertions were localized within the nifB gene, and inability to fix nitrogen was shown to be due to disruption of the nifB gene. However, enhanced ammonium repression proved to be the result of constitutive expression of the downstream nifO gene from an `out' promoter present in Tn5. Our results suggest that molybdenum metabolism might function as a regulatory factor that acts through the nitrate reductase. Received: 4 December 1996 / Accepted: 27 March 1997  相似文献   

12.
Summary Spontaneous chlorate-resistant (CR) mutants have been isolated from Chlamydomonas reinhardtii wildtype strains. Most of them, 244, were able to grow on nitrate minimal medium, but 23 were not. Genetic and in vivo complementation analyses of this latter group of mutants indicated that they were defective either at the regulatory locus nit-2, or at the nitrate reductase (NR) locus nit-1, or at very closely linked loci. Some of these nit-1 or nit-2 mutants were also defective in pathways not directly related to nitrate assimilation, such as those of amino acids and purines. Chlorate treatment of wild-type cells resulted in both a decrease in cell survival and an increase in mutant cells resistant to a number of different chemicals (chlorate, methylammonium, sulphanilamide, arsenate, and streptomycin). The toxic and mutagenic effects of chlorate in minimal medium were not found when cells were grown either in darkness or in the presence of ammonium, conditions under which nitrate uptake is drastically inhibited. Chlorate was also able to induce reversion of nit mutants of C. reinhardtii, but failed to produce His + revertants or Arar mutants in the BA-13 strain of Salmonella typhimurium. In contrast, chlorate treatment induced mutagenesis in strain E1F1 of the phototrophic bacterium Rhodobacter capsulatus. Genetic analyses of nitrate reductase-deficient CR mutants of C. reinhardtii revealed two types of CR, to low (1.5 mM) and high (15 mM) chlorate concentrations. These two traits were recessive in heterozygous diploids and segregated in genetic crosses independently of each other and of the nit-1 and nit-2 loci. Three her loci and four lcr loci mediating resistance to high (HC) and low (LC) concentrations of chlorate were identified. Mutations at the nit-2 locus, and deletions of a putative locus for nitrate transport were always epistatic to mutations responsible for resistance to either LC or HC. In both nit + and nit chlorate-sensitive (CS) strains, nitrate and nitrite gave protection from the toxic effect of chlorate. Our data indicate that in C. reinhardtii chlorate toxicity is primarily dependent on the nitrate transport system and independent of the existence of an active NR enzyme. At least seven loci unrelated to the nitrate assimilation pathway and mediating CR are thought to control indirectly the efficiency of the nitrate transporter for chlorate transport. In addition, chlorate appears to be a mutagen capable of inducing a wide range of mutations unrelated to the nitrate assimilation pathway.  相似文献   

13.
Introns are widespread and variable in eukaryotic genomes. Although their histories and functions, or even whether all of them have any function, remain largely unknown, analysis of intron sequences and genomic contexts may shed light on the evolutionary history of genes and organisms. The number and frequency of introns vary widely in the small number of published genomes of protists and algae suggesting that the same is true of the vast diversity of protists and algae that remain uncultivated. The objective of this study were to investigate introns in sequences of functional genes of phytoplankton, both in published genomes and in sequences obtained from environmental clone libraries. We examined the introns of the genes involved in nitrogen uptake and assimilation pathways in the genome sequences of cultivated phytoplankton as well as in environmental clone libraries of nitrate reductases (NR), nitrite reductase (NiR), nitrate transporter (Nrt2) and ammonium transporter (AMT) genes constructed from pelagic phytoplankton communities in Monterey Bay (CA, USA) and Onslow Bay (NC, USA). Here we describe the most extensive set to date of intron sequences from uncultivated marine algae and report important differences for diatom vs. non-diatom sequences. The majority of the introns in NR, NiR, Nrt2 and AMT from cultured phytoplankton and environmental libraries showed canonical splice patterns. Introns found in diatom-like NR environmental libraries had lower GC content than the respective exons. The green algal-like NR and Nrt2 environmental sequences had introns and exons of much more similar GC content, and both higher than in diatoms. These patterns suggest a different evolutionary history and recent acquisition of diatom introns compared to other algae.  相似文献   

14.
We used the differential display technique on total RNAs from roots of Arabidopsis thaliana (L.) Heynh. plants which had or had not been induced for 2 h by nitrate. One isolated cDNA clone, designated Nrt2:1At, was found to code for a putative high-affinity nitrate transporter. Two genomic sequences homologous to Nrt2:1At were found to be localized on the same fragment of chromosome 1 in the Arabidopsis genome. Expression analyses of both low- and high-affinity nitrate transporter genes, respectively Nrt1:1At (previously named Chl1) and Nrt2:1At, were carried out on plants grown under different nitrogen regimes. In this paper, we show that both genes are induced by very low levels of nitrate (50 μM KNO3). However, stronger induction was observed with Nrt2:1At than with Nrt1:1At. Moreover, these two genes, although both over-expressed in a nitrate-reductase-deficient mutant, were differently regulated when N-sufficient wild-type or mutant plants were transferred to an N-free medium. Indeed, the steady-state amounts of Nrt1:1At mRNA declined whereas the amount of Nrt2:1At mRNA increased, probably reflecting the de-repression of the high-affinity transport system during N-starvation. Received: 4 May 1998 / Accepted: 26 August 1998  相似文献   

15.
A key step for nitrate assimilation in photosynthetic eukaryotes occurs within chloroplasts, where nitrite is reduced to ammonium, which is incorporated into carbon skeletons. The Nar1 gene from Chlamydomonas reinhardtii is clustered with five other genes for nitrate assimilation, all of them regulated by nitrate. Sequence analysis of genomic DNA and cDNA of Nar1 and comparative studies of strains having or lacking Nar1 have been performed. The deduced amino acid sequence indicates that Nar1 encodes a chloroplast membrane protein with substantial identity to putative formate and nitrite transporters in bacteria. Use of antibodies against NAR1 has corroborated its location in the plastidic membrane. Characterization of strains having or lacking this gene suggests that NAR1 is involved in nitrite transport in plastids, which is critical for cell survival under limiting nitrate conditions, and controls the amount of nitrate incorporated by the cells under limiting CO(2) conditions.  相似文献   

16.
17.
Nitrite transport to the chloroplast is not a well documented process in spite of being a central step in the nitrate assimilation pathway. The lack of molecular evidence, as well as the easy diffusion of nitrite through biological membranes, have made this physiological process difficult to understand in plant nutrition. The aim of this review is to illustrate that nitrite transport to the chloroplast is a regulated step, intimately related to the efficiency of nitrate utilization. In Chlamydomonas reinhardtii, the Nar1;1 gene has been shown to have this role in nitrate assimilation. NAR1;1 corresponds to a plastidic membrane transporter protein related to the bacterial formate/nitrite transporters. At least four Nar1 genes might exist in Chlamydomonas. The existence of orthologous Nar1 genes in plants is discussed.  相似文献   

18.
19.
20.
Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号