首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arid shrublands in the Karoo (South Africa) seldom accumulate sufficient combustible fuel to support fire. However, as a result of invasion by an alien perennial grass (Pennisetum setaceum), they could become flammable. This paper reports on an experiment to assess the effects of fire following invasion by P. setaceum. We established 10 plots (5 × 10 m) separated by 2.5 m, and added grass fuel to five plots (5 and 10 tons ha?1 to alternate halves of the plot) leaving the remaining five plots as interspersed controls. Plots with fuel added were burnt, and fire behaviour was measured during the burns. Rates of fire spread were generally low (0.01–0.07 m s?1) and did not differ significantly between burn treatments. Mean fireline intensities were higher in the high compared with the low fuel treatments (894 and 427 kW m?1, respectively). We recorded plant species and their cover before and after burning on each of the plots. After 15 months of follow‐up monitoring in the burn plots, only two species, the dwarf shrub (Tripteris sinuata) and the perennial herb (Gazania krebsiana) resprouted. Most individuals of other species were killed and did not reseed during the 15‐month study. The mass of added fuel load (high or low) did not influence vegetation recovery rates after fire. Should future invasions by P. setaceum lead to similar fuel loads in these shrublands, inevitable fires could change the vegetation and may favour spread of the flammable grass. Our results have important implications for predicting the effects of invasive alien plants (especially grasses) on fire‐free ecosystems elsewhere. The predicted impacts of fire may alter species composition, ultimately affecting core natural resources that support the Karoo economy.  相似文献   

2.
It has been frequently recognised that there is a positive feedback between plant invasion and fire underlying invasion success in fire‐prone ecosystems. Accordingly, the response of woody alien species germination to fire may have direct implications on their invasiveness in those ecosystems, particularly when fruit ripening occurs in the fire season. Here, we experimentally evaluated the germination response of some of the main woody invaders of the Chaco Serrano dry woodlands (Gleditsia triacanthos, Cotoneaster glaucophyllus, Ligustrum lucidum, Pyracantha angustifolia and Melia azedarach), which fruit in the seasons of highest fire frequency. Seeds were subjected to heat‐shock treatments that simulated a range of heat intensities, and the species were classified according to their germination response as heat sensitive, tolerant or stimulated. Since Gleditsia triacanthos has indehiscent fruits that fall from the plant and might be exposed to flames, its germination response was also assessed of seeds exposed to fruit burning. Germination responses to heat varied among the invasive species. G. triacanthos seeds experienced increased germination under very low and low heat indexes; it was therefore classified as heat stimulated. The other four species showed no change in germination under very low heat indexes and were therefore considered heat tolerant. However, all species were sensitive to high heat as indicated by their significant decline in germination. G. triacanthos would have limited capacity to recruit from seeds following flaming combustion of its fruits. The prevalence of heat‐tolerant rather than heat‐stimulated germination responses suggests that the occurrence of frequent and seasonal fires in this subtropical savanna system might delay rather than boost the expansion of these invasive species in the system. Yet, the presence of heat‐stimulated germination in one of the studied species warns against generalisation, even within the same ecosystem, and further supports the idiosyncratic nature of invasion success. Abstract in Spanish is available with online material.  相似文献   

3.
The Madagascan endemic, Bryophyllum delagoense (Crassulaceae), is a major weed in Queensland, Australia. Despite having first been recorded in Australia in the 1940s, it is far more invasive there than on the African mainland where it was introduced more than 170 years ago. This may be due to a number of factors, one of which could be the occurrence of new natural enemy associations in southern Africa. Among the insects of crassulaceous plants that have extended their host ranges, a stem-boring weevil, Alcidodes sedi, was studied to elucidate its status as a natural enemy of B. delagoense in southern Africa and as a candidate biological control agent for introduction to Australia. Laboratory studies indicated that damage inflicted by adult and larval feeding caused significant reductions in stem length and number of leaves. Preliminary host-range trials revealed that A. sedi can complete its development on other species in the Crassulaceae, including most of the introduced Bryophyllum species and some Kalanchoe species native to South Africa. Despite the oligophagous nature of A. sedi and the fact that it can complete its development on a number of ornamental species in the Crassulaceae, it should be considered a potential biological control agent in Australia. All of the native Crassulaceae in Australia are in the genus Crassula, most of which are very small and therefore unlikely to support the development of a large weevil like A. sedi. However, additional host-range trials will have to be undertaken in Australia to determine whether the weevil can be considered safe for release.  相似文献   

4.
Fire regimes influence and are influenced by the structure and composition of plant communities. This complex reciprocal relationship has implications for the success of plant invasions and the subsequent impact of invasive species on native biota. Although much attention has been given to the role of invasive grasses in transforming fire regimes and native plant communities, little is known about the relationship between woody invasive species and fire regime. Despite this, prescribed burning is frequently used for managing invasive woody species. In this study we review relationships between woody exotic plant invasions and fire in invaded ecosystems worldwide. Woody invaders may increase or decrease aspects of the fire regime, including fire frequency, intensity and extent. This is in contrast to grass invaders which almost uniformly increase fire frequency. Woody plant invasion can lead to escape from a grass-fire cycle, but the resulting reduction in fire frequency can sometimes lead to a cycle of rare but more intense fires. Prescribed fires may be a useful management tool for controlling woody exotic invaders in some systems, but they are rarely sufficient to eliminate an invasive species, and a dearth of controlled experiments hampers evaluation of their benefits. Nevertheless, because some woody invaders have fuel properties that differ substantially from native species, understanding and managing the impacts of woody invaders on fire regimes and on prescribed burns should become an important component of resource and biodiversity management.  相似文献   

5.
The transition from a species introduction to an invasion often spans many decades (a lag phase). However, few studies have determined the mechanisms underlying lag phases. Such a mechanistic understanding is vital if the potential ecosystem‐level impacts are to be predicted and the invasion risks to be managed proactively. Here we examine Banksia ericifolia, introduced for floriculture to South Africa, as a case study. We found 18 sites where the species has been planted, with self‐sustaining (naturalized) populations at four sites, and an invasive population at one site. The invasion originated from around 100 individuals planted 35 years ago; after several fires this population has grown to approximately 10 000 plants covering about 127 ha. The current invasion of B. ericifolia already has ecosystem‐level impacts, for example the nectar available to bird pollinators has more than doubled, potentially disrupting native pollination networks. If fires occurred at the other naturalized sites we anticipate populations would rapidly spread and densify with invaded areas ultimately become banksia‐dominated woodlands. Indeed the only site other than the invasive site where fire has occurred regularly is already showing signs of rapid population growth and spread. However, recruitment is mainly immediately post fire and no seed bank accumulates in the soil, mechanical control of adult plants is cheap and effective, and immature plants are easily detected. This study is a first in illustrating the importance of fire in driving lag phases and provides a valuable example for why it is essential to determine the mechanisms that mediate lag phases in introduced plant species. Serotinous species that have been introduced to areas where fire is suppressed could easily be misinterpreted as low risk species whilst they remain in a lag phase, but they can represent a major invasion risk.  相似文献   

6.
Fire has been found to promote or halt biological invasions. Pine trees (genus Pinus) are highly invasive in the southern hemisphere and the effect of fire on their invasion ability is not clear. An analysis of Pinus spreading after wildfires in Patagonia reveals that there is a high risk of pines becoming invasive if ignition frequency increases in Patagonia. Also plantations could increase fire intensity and/or frequency in Patagonia, creating a potential positive feedback between invasion and wildfires. The effect of fires on pine invasion was modulated by precipitation. In areas where precipitation was lower than 800 mm fires did not promote pine invasion. However, in areas with higher precipitation there was a strong promotion of pine invasion by fire, after a lag time. These results show that fire, a disturbance more frequent now in the region, can promote pine invasion.  相似文献   

7.
Abstract Riparian habitats are highly important ecosystems for tropical biodiversity, and highly threatened ecosystems through changing disturbance regimes and weed invasion. An experimental study was conducted to assess the ecosystem impacts of fire regimes introduced for the removal of the exotic woody vine, Cryptostegia grandiflora, in tropical north‐eastern Australian woodlands. Experimental sites in subcatchments of the Burdekin River, northern Queensland, Australia, were subjected to combinations of early wet‐season and dry‐season fires, and single and repeated fires, with an unburnt control. Woody vegetation was sampled using permanent quadrats to record and monitor plants species, number and size‐class. Sampling was conducted pre‐fire in 1999 and post‐fire in 2002. All fire regimes were effective in reducing the number and biomass of C. grandiflora shrubs and vines. Few woodland or riparian species were found to be fire‐sensitive and community composition did not change markedly under any fire regime. The more intense dry‐season fires impacted the structure of non‐target vegetation, with large reductions in the number of sapling trees (<5 cm d.b.h.) and reductions in the largest tree size‐class and total tree basal area. Unexpectedly, medium‐sized canopy trees (10–30 cm d.b.h.) appear to have been significantly benefited by fires, with decreases in number of trees of this size‐class in the absence of fire. Although the presence of C. grandiflora as a vine in riparian forest canopies changed the nature and intensity of crown combustion patterns, this did not lead to the initiation of a self‐perpetuating weed–fire cycle, as invaders were unable to take advantage of gaps caused by fire. Low intensity, early wet‐season burning, or early dry‐season burning, is recommended for control of C. grandiflora in order to minimize the fire intensity and risk of the loss of large habitat trees in riparian habitats.  相似文献   

8.
The reintroduction of pre-European fire regimes has allowed the entry of many invasive plant species into fire-dependant ecosystems of North America. However, the environmental factors that favor the post-fire establishment of these species across complex landscapes are not well understood and the initial establishment of invasive species does not necessarily result in long-term persistence. To evaluate the post-fire establishment and persistence of disturbance-dependent invasive plants, we studied the invasion of Paulownia tomentosa (princess tree, an early-successional species introduced from Asia) across three burns in the southern Appalachian Mountains. Based upon classification tree analysis, the presence/absence of P. tomentosa 2 years after burning was most strongly related to the cover of residual vegetation, topographic shading, and moisture availability. Spatial application of classification tree models to repeated survey data showed that P. tomentosa established across a wide range of microsites 2 years after burning. However, predicted habitat for P. tomentosa decreased by 63% 4 years after fire and by 73% 6 years after fire. Following its initial widespread establishment, P. tomentosa only persisted on xeric and exposed topographic positions that experienced high intensity burning. However, the sites where it persisted include rare community types that contain two endangered plant species that depend upon fire for successful reproduction. The control of P. tomentosa on these ecologically important sites may require special attention from land managers.  相似文献   

9.
In contrast to the widespread extirpation of native fire ants (Solenopsis geminata) across southern US following the invasion by imported red fire ants (S. invicta), some residential areas of Austin form unexpected refuges for native fire ants. Ironically, these urban environments provide refuges for the native fire ants while adjacent natural habitats have been overrun by invasive fire ants. Resistance to invasive fire ants in these urban areas occurs mainly in older residential properties constructed prior to the S. invicta invasion, while more recent construction has allowed establishment by S. invicta. The invasive ability of S. invicta is often attributed to escape from parasitoids and efficient dispersal of polygyne multiple queen colonies. Here we also show the importance of landscape parameters in the invasion process, where low levels of disturbance and continuous plant cover in older residential areas form possible barriers to colonization. Dense leaf cover (high NDVI) was also found to be associated with native ant refuges. Long term residential land ownership may have resulted in lower recent disturbance levels and increased plant cover that support refuges of native fire ants.  相似文献   

10.
Abstract. Grass and herb cover, and woody plant densities were measured on 25 native and 25 exotic grassland plots in southeastern Arizona between 1984 and 1990. At least 40 yr previously, the exotic plots had been seeded with two species of lovegrasses (Eragrostis spp.) native to southern Africa. A 1987 wildfire burned 11 native and 11 exotic plots. The fire reduced cover of both native and African grasses for two post-fire growing seasons. Herb cover as a whole increased after the fire for 2 yr, although there were important differences among species. One of two dominant shrubs (Haplopappus tenuisectus) was killed by the fire, while the other (Baccharis pteronioides) was little affected. Mesquite trees (Prosopis juliflora) were killed to the ground by the fire, but 62 of 66 trees had re-sprouted to an average 48% of pre-burn height by 1990. Native and exotic grasses appeared equally tolerant of fire, probably because both evolved in fire-type ecosystems. There was no evidence that fire can be used to permanently restore the diverse native flora to species-poor plantations of the South African exotics.  相似文献   

11.
Question: What are the effects of fire season and intensity on resprouting of different root‐crown bearing shrub species in second‐growth Pinus palustris (longleaf pine) savannas? Location: northern Florida and eastern Louisiana, USA. Methods: In Florida, quadrats were burned biennially either during the dormant season or the growing season. In Louisiana, we applied intensity treatments to quadrats by manipulating ground‐cover fuels, just prior to biennial growing season fires. Maximum fire temperatures were measured, and stem densities were censused before and after fires in both regions. Results: After dormant season fires in Florida, stem densities were seven times greater than initial levels for Hypericum spp. In contrast, growing season fires reduced densities of H. brachyphyllum by 65%, but did not change densities of H. microsepalum. Only resprouting of H. microsepalum decreased with increased fire intensity. In Louisiana, fire intensity influenced Ilex vomitoria, but not Quercus spp. Following fires, stem densities oil. vomitoria were five times greater in fuel removal than fuel addition areas. Conclusions: Past use of dormant season fires likely contributed to increased abundances of some species of root‐crown bearing shrubs observed today in old‐growth savannas. Reintroduction of growing season fires will be effective in maintaining or decreasing stem densities, depending on species and fuel type. Genet mortality and stem density reductions appear most likely in areas at localized scales where tree falls and needle coverage create hotspots in Pinus palustris savannas.  相似文献   

12.
Interrelated causes of plant invasion have been gaining increasing recognition. However, research on this subject has mainly focused around conceptual models. Here we explore whether plant–soil biota feedbacks and disturbance, two major factors capable of facilitating invasive plants in introduced ranges, interact to preferentially benefit exotics compared to native plants. We investigated the influence of fire disturbance on plant–soil biota interactions for the invasive Acacia longifolia and two dominant natives (Cytisus striatus and Pinus pinaster) in Portuguese dune systems. In the first experiment, we grew exotic and native plants in soil inoculated with soil biota from unburned or recently burned soils collected in an area with small invasion intensity by A. longifolia. Soil biota effects on the exotic legume A. longifolia changed from neutral to positive after fire, whereas the opposite outcome was observed in the native legume C. striatus, and a change from negative to neutral effects after fire occurred in the native P. pinaster. Fire reduced mycorrhizal colonization in all species and rhizobial colonization in C. striatus but not in A. longifolia. In the second experiment, we grew the exotic and native plants with conspecific and heterospecific soil biota from undisturbed soils (area with low invasion intensity by A. longifolia), and from post‐fire soils (area affected by a fire ~12 years ago and currently heavily invaded by A. longifolia). The exotic benefited more from post‐fire than from undisturbed soil biota, particularly from those associated with natives. Natives did not experience detrimental effects with invasive‐associated soil biota. Our results show that fire disturbance affected the functional interactions between soil biota and plants that may benefit more the exotic than some native species. Disturbance may open a window of opportunity that promotes invader success by altering soil enemy and mutualistic impacts.  相似文献   

13.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

14.
One of the greatest threats to the native ecosystems in any part of the world is the invasion and permanent colonization of ecosystems by non-native species. Florida is no exception to this biological invasion, and is currently colonized by an extensive variety of exotic plant species. Originally imported from Asia over 30 years ago, Old World Climbing Fern Lygodium microphyllum (Cavanilles) R. Brown) has become one of the most invasive and destructive weeds in southern Florida. To date different effective control measures of its growth and spread have not been successful; fire and herbicide applications that are currently employed are neither cost effective nor environmentally friendly. In light of the highly delicate ecosystem that is being affected by L. microphyllum, we tested the soil fungus Myrothecium verrucaria (Albertini and Schwein) Ditmar: Fr. for its pathogenicity on the invasive fern. In greenhouse studies the effect of two conidial concentrations of M. verrucaria on L. microphyllum was investigated. Plants were spray inoculated with M. verrucaria which resulted in successful disease development with leaf necrosis symptoms. The higher conidial concentration (1 × 108 ml−1) produced a disease index of approximately 3 on a scale of 0 to 4, day 24 postinitial inoculation, demonstrating the efficacy of this fungus as a severe retardant of Lygodium growth. Preliminary screening of selected native plant species for susceptibility to M. verrucaria showed low disease indices after repeated spray inoculations; the highest index attained was 0.4 by Slash pine (Pinus elliottii).  相似文献   

15.
Satellite remote sensing offers a cost‐effective method for monitoring fire occurrence in savannah systems, for proper fire management. However, the ability of satellite fire products to detect active fire is known to vary depending on the terrestrial ecosystems and sensor characteristics. In this study, the overall accuracy, kappa coefficient of agreement and true skill statistic (TSS) were used to assess the accuracy of two MODIS fire products (MOD14A1 and MCD14ML) to detect active fire at two savannah woodland sites dominated by Baikiaea plurijuga and Brachystegia spiciformis in Zimbabwe. In both sites, MOD14A1 with a coarse spatial resolution of 1 km had a poor index of agreement with ground fire data (kappa = 0, TSS = 0 and overall accuracy ≤ 0.4). By contrast, a moderate to strong agreement between MCD14ML and active fires measured on the ground was observed at both study sites (overall accuracy ≥ 0.7, kappa ≥ 0.6 and TSS ≥ 0.6; Table  1 ). It was therefore concluded that MCD14ML, with a spatial resolution of 375 m, is a more suitable product for detecting active fires in both Baikiaea plurijuga and Brachystegia‐dominated savannah woodlands of southern Africa compared to MOD14A1.  相似文献   

16.
Invasive species can increase fire frequency and intensity, generating favorable conditions for their self-perpetuation. Mediterranean south-central Chile may be especially prone to the effects of invasive species on fire regimes because it is less adapted to fire and it contains a highly endemic flora. Teline monspessulana (L.) K. Koch (syn. Cytisus monspessulanus L.; Genista monspessulana (L.) L.A.S. Johnson) is an introduced shrub that forms monotypic stands or is present as an understory species in native forests as well as in forestry plantations. Dense T. monspessulana stands are completely destroyed by fire, generating the conditions for it seeds to germinate and establish an abundant regeneration, with up to 900 plants/m2. We report key evidence on abundance and biomass in adult stands, and patterns of seed bank and regeneration after fire in stands of T. monspessulana around the city of Concepción, Chile. We estimated living biomass in pure stands and underneath Eucalyptus plantations. In burned areas, we assessed T. monspessulana seed bank and studied regeneration patterns. We found that T. monspessulana densities reaches 52,778 plants/ha and 8.92 ton/ha in pure stands and 34,223 plants/ha and 2.31 ton/ha underneath Eucalyptus plantations. T. monspessulana generates small caliper fuel and acts as a ladder-fuel. Large soil seed banks allow for abundant regeneration after fire, with mean densities of 877,111 plants/ha, but an overall mortality of 37.2% in the first year after the fire. The high values of regeneration compared to final densities in adult stands suggest that density-dependent mortality. Our results indicate that T. monspessulana regeneration is not only favored by fires, but also that the species creates favorable conditions for intense and continuous fires, both under pure conditions, but also associated to exotic tree plantations. To understand the implications of positive feedbacks between invaders and fire, we recommend focusing in the mechanisms by which they increases fuel accumulation and fuel flammability, and how higher fire frequency and intensity favors invasive species recruitment over native species. Comprehension of this dynamics will allow for better management and control of these invasions which have major ecological, economical and social implications.  相似文献   

17.
Aim In this study we examine fire history (i.e. c. 500 yr bp to present) of AraucariaNothofagus forests in the Andes cordillera of Chile. This is the first fire history developed from tree rings for an AraucariaNothofagus forest landscape. Location The fire history was determined for the Quillelhue watershed on the north side of Lanin volcano in Villarrica National Park, Chile. The long‐lived Araucaria araucana was commonly associated with Nothofagus pumilio and N. antarctica in more mesic and drier sites respectively. Methods Based on a combination of fire‐scar proxy records and forest stand ages, we reconstructed fire frequency, severity, and the spatial extent of burned areas for an c. 4000 ha study area. We used a composite fire chronology for the purpose of determining centennial‐scale changes in fire regimes and comparing the pre‐settlement (pre‐1883) and post‐settlement fire regimes. In addition, we contrasted Araucaria and Nothofagus species as fire‐scar recorders. Results In the study area, we dated a total of 144 fire‐scarred trees, representing 46 fire years from ad 1446 to the present. For the period from ad 1696 to 2000, using fire dates from Araucaria and Nothofagus species, the composite mean fire interval varied from 7 years for all fires to 62 years for widespread events (i.e. years in which ≥ 25% of recorder trees were scarred). Sensitivity to fire was different for Araucaria and Nothofagus species. More than 98% of the fires recorded by Nothofagus species occurred during the 1900s. The lack of evidence for older fire dates (pre‐1900) in Nothofagus species was due to their shorter longevity and greater susceptibility to being killed by more severe fires. Whereas the thin‐barked N. pumilio and N. antarctica are often destroyed in catastrophic fire events, large and thick‐barked Araucaria trees typically survive. The spatial extent of fires ranged from small patchy events to those that burned more than 40% of the entire landscape (c. > 1500 ha). Main conclusions Fire is the most important disturbance shaping the AraucariaNothofagus landscape in the Araucarian region. The forest landscape has been shaped by a mixed‐severity fire regime that includes surface and crown fires. High‐severity widespread events were relatively infrequent (e.g. 1827, 1909 and 1944) and primarily affected tall AraucariaN. pumilio forests and woodlands dominated by AraucariaN. antarctica. Although there is abundant evidence of the impact of Euro‐Chilean settlers on the area, the relative influence of this settlement on the temporal pattern of fire could only be tentatively established due to the relatively small number of pre‐1900 fire dates. An apparent increase in fire occurrence is evident in the fire record during Euro‐Chilean settlement (post‐1880s) compared with the Native American era, but it may also be the result of the destruction of evidence of older fires by more recent stand‐devastating fires (e.g. 1909 and 1944). Overall, the severe and widespread fires that burned in AraucariaNothofagus forests of this region in 2002, previously interpreted as an ecological novelty, are within the range of the historic fire regimes that have shaped this forested landscape.  相似文献   

18.
A.B.R. Witt 《BioControl》2004,49(2):197-209
A stem-boring weevil, Osphilia tenuipes (Fairmaire) (Coleoptera: Curculionidae), from Madagascar, was screened in South Africa to determine its potential as a biological control agent for Bryophyllumdelagoense (Ecklon & Zeyher) Schinz(Crassulaceae) in Australia. Favourableattributes of the weevil include ease ofculturing, multiple generations per year, andhigh levels of damage inflicted on B. delagoense under laboratory conditions. Despite indications that O. tenuipes hasa narrow field host range, no-choice andmultiple-choice trials in quarantine revealedthat it could oviposit and develop to adulthoodon seven non-target species in the familyCrassulaceae, without an obvious loss offitness on four of those species. Despitethese results, O. tenuipes is consideredto have potential for release against B. delagoense in Australia because the continenthas very few native Crassulaceae which couldpotentially serve as alternative hosts in thefield.  相似文献   

19.
Elevated CO2 and warming may alter terrestrial ecosystems by promoting invasive plants with strong community and ecosystem impacts. Invasive plant responses to elevated CO2 and warming are difficult to predict, however, because of the many mechanisms involved, including modification of phenology, physiology, and cycling of nitrogen and water. Understanding the relative and interactive importance of these processes requires multifactor experiments under realistic field conditions. Here, we test how free‐air CO2 enrichment (to 600 ppmv) and infrared warming (+1.5 °C day/3 °C night) influence a functionally and phenologically distinct invasive plant in semi‐arid mixed‐grass prairie. Bromus tectorum (cheatgrass), a fast‐growing Eurasian winter annual grass, increases fire frequency and reduces biological diversity across millions of hectares in western North America. Across 2 years, we found that warming more than tripled B. tectorum biomass and seed production, due to a combination of increased recruitment and increased growth. These results were observed with and without competition from native species, under wet and dry conditions (corresponding with tenfold differences in B. tectorum biomass), and despite the fact that warming reduced soil water. In contrast, elevated CO2 had little effect on B. tectorum invasion or soil water, while reducing soil and plant nitrogen (N). We conclude that (1) warming may expand B. tectorum's phenological niche, allowing it to more successfully colonize the extensive, invasion‐resistant northern mixed‐grass prairie, and (2) in ecosystems where elevated CO2 decreases N availability, CO2 may have limited effects on B. tectorum and other nitrophilic invasive species.  相似文献   

20.
Abstract. Bryophyte dynamics after fire in the Mediterranean macchia of Southern Italy was studied both by diachronic and synchronic approaches. Changes of bryophyte cover and species composition were found in relation to both age and fire intensity. During the first 2 yr after fire, bryophytes dominated the plots which had experienced the highest fire intensity while herbs were dominant in plots affected by lighter fires. Pioneer species, such as Funaria hygrometrica, Barbula convoluta and Bryum dunense, characterized recent intense fires, whereas Bryum torquescens, B. radiculosum and B. ruderale were dominant after less intense burning. Pleurochaete squarrosa, Tortula ruraliformis and Tortella flavovirens dominated intermediate successional stages. Pleurocarpous mosses were dominant only in the older closed stands. Different patterns of regeneration strategies were described: spores dominated early stages of intense fire, while vegetative propagules characterized later successional stages and less severely burned areas. Although bryophytes usually have a low abundance in Mediterranean vegetation, their role in post-fire vegetation dynamics may be locally enhanced according to burning conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号