首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive species can increase fire frequency and intensity, generating favorable conditions for their self-perpetuation. Mediterranean south-central Chile may be especially prone to the effects of invasive species on fire regimes because it is less adapted to fire and it contains a highly endemic flora. Teline monspessulana (L.) K. Koch (syn. Cytisus monspessulanus L.; Genista monspessulana (L.) L.A.S. Johnson) is an introduced shrub that forms monotypic stands or is present as an understory species in native forests as well as in forestry plantations. Dense T. monspessulana stands are completely destroyed by fire, generating the conditions for it seeds to germinate and establish an abundant regeneration, with up to 900 plants/m2. We report key evidence on abundance and biomass in adult stands, and patterns of seed bank and regeneration after fire in stands of T. monspessulana around the city of Concepción, Chile. We estimated living biomass in pure stands and underneath Eucalyptus plantations. In burned areas, we assessed T. monspessulana seed bank and studied regeneration patterns. We found that T. monspessulana densities reaches 52,778 plants/ha and 8.92 ton/ha in pure stands and 34,223 plants/ha and 2.31 ton/ha underneath Eucalyptus plantations. T. monspessulana generates small caliper fuel and acts as a ladder-fuel. Large soil seed banks allow for abundant regeneration after fire, with mean densities of 877,111 plants/ha, but an overall mortality of 37.2% in the first year after the fire. The high values of regeneration compared to final densities in adult stands suggest that density-dependent mortality. Our results indicate that T. monspessulana regeneration is not only favored by fires, but also that the species creates favorable conditions for intense and continuous fires, both under pure conditions, but also associated to exotic tree plantations. To understand the implications of positive feedbacks between invaders and fire, we recommend focusing in the mechanisms by which they increases fuel accumulation and fuel flammability, and how higher fire frequency and intensity favors invasive species recruitment over native species. Comprehension of this dynamics will allow for better management and control of these invasions which have major ecological, economical and social implications.  相似文献   

2.
The evolution of redirecting resources from plant defense to growth or reproduction may explain why some exotic species are successful invaders in new environments. For example, the evolution of increased competitive ability hypothesis posits that escape from herbivores by invasive plants results in the selection of more vigorous genotypes that reduce their allocation of resources to defense. In addition, understanding the defense strategy of an invasive plant may help forecast the likely impact of herbivory. We tested the prediction of reduced defense (i.e., resistance) in Genista monspessulana, measured indirectly as the performance of a specialist psyllid herbivore, by comparing five native and introduced plant populations. We also examined the ability of G. monspessulana to compensate for herbivory in the presence and the absence of psyllids for a single plant population from the native and introduced regions. Plant origin (native or introduced) did not influence the psyllid’s abundance and population growth rate, suggesting no change in resistance to herbivory for introduced plants. Similarly, we found no overall difference in plant performance between individuals in the presence and the absence of psyllid herbivory, suggesting that G. monspessulana was able to fully compensate for herbivory. Damaged plants compensated by changing the pattern of branching, which also resulted in greater dry leaf biomass. We conclude that evolution of reduced defenses does not explain the success of G. monspessulana as an invader and that compensation for herbivory may limit the efficacy of the psyllid as a biological control agent.  相似文献   

3.
Comparisons of introduced exotics that invade and those that do not can yield important insights into the ecology of invasions. Centaurea solstitialis, C. calcitrapa, and C. sulphurea are closely related, share a similar life history and were each introduced to western North America from Southern Europe ~100–200 years ago. However, of these three species, only C. solstitialis has become invasive. We collected seeds from different populations for each of the three species both in the native range of Spain and the non-native range of California, measured individual seed mass, and grew plants from these seeds in a greenhouse experiment in Montana. The invasive C. solstitialis had the smallest seeds and seedlings of the three congeners. However, in contrast to its non-invasive congeners, C. solstitialis had the highest relative growth rates when grown in competition. C. solstitialis was also the only species to show significant differences in traits between populations from different ranges, with plants from the non-native range of California demonstrating greater competitive resistance, larger seed size, and larger seedling mass than plants from the native range in Spain. This suggests that C. solstitialis may be evolving toward larger seed and seedling sizes in this non-native range. Relative growth rate showed no inter-regional variation for any species, but was higher for C. solstitialis than its congeners when in competition, and thus may interact with the evolution of larger seeds and plant mass in ways that contribute to the extraordinary invasive success of this species.  相似文献   

4.
Understanding intraspecific variation in traits that determine fitness is foundational to a trait-based approach to plant ecology. This study examined fitness components during 3 years of reproduction in a polycarpic perennial bunchgrass (Tridens flavus) native to eastern North America that could prove useful in revegetating disturbed habitats. Plants were cultured from seeds of five populations in central New Jersey, USA, and planted in July 2015 into two undisturbed gardens 30 m apart that differed in availability of sunlight and soil moisture. Following flowering in 2016, 2017 and 2018, the number of panicles, seed set, seed number (fecundity) and seed mass were recorded. Final dry aboveground mass was determined. Seed set was high (>70%) in all populations and gardens. Panicle production varied with population and was strongly correlated with fecundity, but populations were not differentiated for other fitness components. Panicle and seed number were greatest in the drier garden with greater daily light availability. Mass per seed was reduced as more seeds were produced in the second and third year but showed low variation compared to fecundity. Vegetative mass was the most important variable determining fecundity. Close proximity of sampled sites and an outcrossed, wind-pollinated mating strategy may have precluded detection of differentiation among T. flavus populations in the common gardens. High seed set, prodigious seed production on multiple panicles and high seed germinability and overwinter survival account for the occurrence of large populations of this native grass along roadsides and within successional fields and young woodlands throughout the region.  相似文献   

5.

Aim

Tidal wetlands are greatly impacted by climate change, and by the invasion of alien plant species that are being exposed to salinity changes and longer inundation periods resulting from sea level rise. To explore the capacity for the invasion of Iris pseudacorus to persist with sea level rise, we initiated an intercontinental study along estuarine gradients in the invaded North American range and the native European range.

Location

San Francisco Bay-Delta Estuary; California, USA and Guadalquivir River Estuary; Andalusia, Spain.

Methods

We compared 15 morphological, biochemical, and reproductive plant traits within populations in both ranges to determine if specific functional traits can predict invasion success and if environmental factors explain observed phenotypic differences.

Results

Alien I. pseudacorus plants in the introduced range had more robust growth than plants in the native range. The vigour of the alien plants was reflected by expression of higher leaf water content, fewer senescent leaves per leaf fan, and more carbohydrate storage reserves in rhizomes than plants in the native range. Moreover, alien plants tended to show higher specific leaf area and seed production than native plants. I. pseudacorus plants in the introduced range were less affected by increasing salinity and were exposed to deeper inundation water along the estuarine gradient than those in the native range.

Main Conclusions

Functional trait differences suggest mature populations of I. pseudacorus in the introduced range have greater adapted capacity to adjust to environmental stresses induced by rising sea level than those in the native range. Knowledge of these trait responses can be applied to improve risk assessments in invaded estuaries and to achieve climate-adapted conservation goals for conservation of the species in its native range.  相似文献   

6.
Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus‐, family‐ or habitat‐specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t‐tests to compare original and introduced range populations, two‐way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7‐fold (all species), 6.9‐fold (herbs only) and 26.1‐fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long‐distance seed dispersal may significantly contribute to the invasiveness of many exotic species.  相似文献   

7.
Investigating the origins of invasive populations provides insight into the evolutionary and anthropogenic factors underlying invasions, and can inform management decisions. Invasive species introduced for horticultural purposes often have complex origins typified by multiple introductions of species, cultivars, and genotypes, and interspecific and intraspecific hybridizations in introduced ranges. Such complex introduction histories may result in complex genetic signatures in the invaded range, making inferences about origins difficult, particularly when all putative sources cannot be sampled. In this study, we inferred the origins of the invasive French broom complex in California using 12 nuclear microsatellite markers. We characterized the genetic diversity and population structure of invasive and horticultural brooms in their invaded range in California and of Genista monspessulana in its native Mediterranean range. Overall, no significant differences in allelic richness, observed heterozygosity, inbreeding, or genetic structure were observed between the invaded and native ranges, but differences existed among populations within ranges. Bayesian STRUCTURE analysis revealed three genetic clusters in the French broom complex. Nearly all native G. monspessulana assigned highly to a single cluster. Many invasives assigned to a second cluster that contained Genista canariensis, Genista stenopetala, and ornamental sweet broom, and the remaining invasives assigned to a third cluster that also contained some G. monspessulana individuals from Sardinia and Corsica. Admixture between the second and third clusters was detected. Approximate Bayesian Computation analysis of six alternative scenarios supported the hypothesis that some invasive French broom is derived from an unsampled population branching from ornamental sweet broom. A combination of factors, including multiple introductions, escapes from cultivation, and inter-taxon hybridization, likely contribute to the invasive success of French broom in California and may have important implications for management, in particular biological control.  相似文献   

8.
David A. Pyke 《Oecologia》1990,82(4):537-543
Summary Demographic characteristics associated with the maintenance and growth of populations, such as seed dynamics, seedling emergence, survival, and tiller dynamics were examined for two tussock grasses, the native Agropyron spicatum and the introduced Agropyron desertorum in a 30-month field study. The introduced grass was aerially sown onto a native grassland site. Seed production of the introduced grass was greater than the native grass in both above- and below-average precipitation years. Seeds of A. spicatum were dispersed when they mature, while A. desertorum retained some seeds in inflorescences, and dispersed them slowly throughout the year. This seed retention allowed some seeds of the introduced grass to escape peak periods of seed predation during the summer and allowed seeds to be deposited constantly into the seed bank. Carryover of seeds in the seed bank beyond one year occurred in the introduced grass but not in the native species. For both species, seedling emergence occurred in both autumn or spring. Survival rates for A. desertorum were higher than A. spicatum when seedlings emerged between November and March. Survival rates of cohorts emerging before November favored A. spicatum whereas survival rates did not differ between species for cohorts emerging after March. Individuals of both species emerging after April were unable to survive the summer drought. Demographic factors associated with seeds of A. desertorum seemed to favor the maintenance and spread of this introduced grass into native stands formerly dominated by A. spicatum.  相似文献   

9.
Austrostipa compressa, a native ephemeral of southwest Western Australia was stimulated to germinate under a range of temperatures, in the presence of light, and exposure to smoke-water. This combination of environmental cues results in winter-maximum germination in immediate postfire and disturbed-soil environments of this Mediterranean-type climate. In contrast, Ehrharta calycina, an introduced perennial grass from southern Africa that has invaded Banksia woodlands, germinated under a wide range of temperature and light conditions, but showed no promotive response to smoke-water. Although A. compressa seeds tolerated heat shock better than E. calycina, the self-burial mechanism of A. compressa seeds ensures protection from fire. High-intensity fire could have a greater impact on E. calycina, as the seeds of this species tend to accumulate in the top of the soil profile where they are more susceptible to high temperatures. Although seeds of E. calycina are more susceptible to high temperatures, survival of mature individuals by postfire resprouting ensures continued survival in native woodlands. Estimates of soil seed bank densities showed extreme variability, but some recently burnt areas of the Yule Brook Botany Reserve contained up to 8000 seed m?2 of A. compressa and nearly 75 000 seeds m?2 of E. calycina. Viable soil seed bank densities of A. compressa are reduced with time-since-last fire, but areas of greater than 45 years since the last fire, still contained up to 119 seeds m?2. In both species, only about half their soil seed bank germinates following fire, thus ensuring the potential for later recruitment. Massive soil seed populations of E. calycina in native Banksia woodlands pose a major problem to management of this plant community type.  相似文献   

10.
Escape from enemies in the native range is often assumed to contribute to the successful invasion of exotic species. Following optimal defence theory, which assumes a trade‐off between herbivore resistance and plant growth, some have predicted that the success of invasive species could be the result of the evolution of lower resistance to herbivores and increased allocation of resources to growth and reproduction. Lack of evidence for ubiquitous costs of producing plant toxins, and the recognition that invasive species may escape specialist, but not generalist enemies, has led to a new prediction: invasive species may escape ecological trade‐offs associated with specialist herbivores, and evolve increased, rather than decreased, production of defensive compounds that are effective at deterring generalist herbivores in the introduced range. We tested the performance of two generalist lepidopteran herbivores, Trichoplusia ni and Orgyia vetusta, when raised on diets of native and invasive populations of the California poppy, Eschscholzia californica. Pupae of T. ni were significantly larger when reared on native populations. Similarly, caterpillars of O. vetusta performed significantly better when raised on native populations, indicating that invasive populations of the California poppy are more resistant to herbivores than native populations. The chance of successful establishment of some non‐indigenous plant species may be increased by retaining resistance to generalist herbivores, and in some cases, invasive species may be able to escape ecological trade‐offs in their new range and evolve, as we observed, even greater resistance to generalist herbivores than native plants.  相似文献   

11.
Parkinsonia aculeata is an invasive tree native to tropical America, but introduced to Australia. Propagation and stand regeneration is mainly by seed. To gain baseline knowledge for management decisions, seed bank dynamics were monitored for two months during the fruit dispersal period at a coastal wetland in Costa Rica (native habitat), and at a coastal wetland and two semi-arid rangeland sites in Northern Queensland, Australia (introduced habitats). Seed bank densities underneath dense, uniform Parkinsonia stands were found to be lowest in the Australian wetland but highest in the Costa Rican wetland. Post-dispersal seed losses were highest in the Australian wetland, primarily due to seed germination and/or death. At the other sites, seed losses were minor during the study period, and predation was the most important cause of losses. At the two rangeland sites bruchid beetles accounted for more than 95% of the seed losses by predation. Total predation was lowest in the Costa Rican wetland. In order to test for intrinsic differences of seed characteristics, germination trials were conducted using both canopy seeds and seeds from the soil seed bank. Dormancy release and germination rate were studied under four temperature treatments. In all populations, dormancy release increased with increasing temperature, but averaged responses were significantly different between Costa Rican and Australian seed populations, and between seeds collected from the soil and from trees. Germination rate of scarified seeds was fastest at 35 °C in all tested seed populations. While high seed germination levels seem to explain low seed bank densities in the Australian wetland, the large seed banks at the rangeland sites reflect the lower incidence of favourable conditions for germination. In the Australian wetland biocontrol with bruchids is unlikely to be successful, while control by conventional methods, such as killing stands by basal bark spraying, seems feasible, due to a lower long-term risk of re-infestation from the soil seed bank. At the rangeland sites conventional control will be difficult and costly. Parkinsonia stands may be better left to their own, while bruchid populations are monitored and management efforts are concentrated on preventing further invasion.  相似文献   

12.
One of the characteristics of highly invaded ecosystems is that exotic species are often poor invaders of edaphically severe sites, which become refuges for native flora. To investigate the invasive potential of Lolium multiflorum (Per.) into alkali sites in California, an ex-situ reciprocal transfer experiment was carried out using seeds from populations of L. multiflorum taken from three sites differing in alkalinity (and inundation), including alkali sink soils (pH 8.5) and sink matrix soils (pH 7.4) located within meters of each other, and non-sink soils (pH 5.0) located several km away. Survivorship, plant height, leaf number and seed production were assessed. In addition, a native composite, Hemizonia pungens (Hick.), commonly found on alkali sinks was also sampled at the sink and sink matrix microsites. Lolium multiflorum plants grown from alkali sink and sink matrix seeds produced fewer leaves and seeds but were taller than plants grown from non-alkali seeds, the latter perhaps an adaptation to frequently inundated soils. Non-alkali genotypes fared poorly in sink soils for all traits, both in comparison to their growth on non-sink soils, and in comparison to the sink and sink edge genotypes. This suggests the existence of L. multiflorum ecotypes adapted to inundated alkali sinks, a genotypic difference that occurs on a broad spatial scale (kilometers), but not so obviously on the micro-site scale (meters) between sink and sink matrix populations. These data suggest that the absence of exotic invasives from alkali sites may be temporary if they are evolving tolerance for these severe sites, and this may threaten the future of the native alkali specialists that currently find refuge in these sites.  相似文献   

13.
In subtropical Australia, many native and invasive plant species rely on a shared suite of frugivores, largely birds, for seed dispersal. Many native plants fruit during summer in this region, whereas most invasive plants fruit during winter, thus providing the opportunity for contagious dispersal of seeds beneath synchronously fruiting species. We sampled invasive and native seed rain beneath the canopy of a native summer‐fruiting tree Guioa semiglauca and an invasive winter‐fruiting tree Cinnamomum camphora, in three study sites over the course of a year. In July, during peak fruiting season for C. camphora and other invasive species, seed rain of invasive species was higher beneath C. camphora than G. semiglauca. This was partly due to the invasive tree Ligustrum lucidum, whose seed rain was three times higher beneath C. camphora than beneath the native tree. In February, seed rain of native species was more abundant beneath the canopy of G. semiglauca than beneath C. camphora, despite the fact that C. camphora was also fruiting at this time. This was probably due to the larger fruit crop produced by G. semiglauca at this time of year. Our study provides evidence that the presence of invasive bird‐dispersed plants may facilitate contagious seed dispersal of other invaders, and likewise native species may facilitate seed spread of other native plants.  相似文献   

14.
Determining the best management practices for plant invasions is a critical, but often elusive goal. Invasive removals frequently involve complex and poorly understood biotic interactions. For example, invasive species can leave potent legacies that influence the success of native species restoration efforts, and positive plant‐microbial feedbacks may promote continued reinvasion by an exotic species following restoration. Removal methods can vary in their effects on plant–soil feedbacks, with consequences for restoration of native species. We determined the effects of invasion by a leguminous shrub (French broom; Genista monspessulana) on the density and community composition of, and benefit conferred by, its microbial mutualists in its invading range. Densities of soil‐dwelling rhizobia were much higher in areas invaded by G. monspessulana relative to uninvaded areas, and this increased density of rhizobia fed back to increase seedling growth of both the invader and native legumes. We further compared how three techniques for removing G. monspessulana affected the densities of rhizobia relative to areas where G. monspessulana was still present. Removal by hand‐pulling reduced soil rhizobial densities, and reduced growth of one native legume, while having no effect on the growth of the invader. Overall, our results show that the consequences of restoration techniques, both above‐ and belowground, could be critical for the successful removal of an invasive legume and restoration of native species.  相似文献   

15.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

16.
We investigated the effects of exotic species invasion and 3?years of nitrogen (N) fertilization on the soil seed bank in Joshua Tree National Park, California, USA at four sites along an N deposition gradient. We compared seed bank composition and density in control (no N added) and fertilized (30?kg?N?ha?1?year?1) plots to determine if the seed bank would reflect aboveground changes due to N fertilization. Soil samples were collected and germinated in a greenhouse over 2?years. In the field, invasive species cover responded positively to N fertilization. However, we did not observe increased seed density of exotic invasive species in fertilized plots. While no significant differences were detected between treatments within sites, exotic invasive grass seeds overwhelmed the seed bank at all sites. Significant differences between sites were found, which may be due to differences in level of invasion, historic N deposition, and soil surface roughness. Sites experiencing low N deposition had the highest seed bank species richness for both control and fertilized treatments. Aboveground plant density did not correlate well with seed bank density, possibly due to the inherent patchiness of soil seed banks and differential ability of species to form seed banks. This seed bank study provided insight into site-specific impacts on native versus invasive species composition of soil seed banks, as well as magnitude of invasion and restoration potential at invaded sites.  相似文献   

17.
Phenotypic plasticity is often considered important for invasive plant success, yet relatively few studies have assessed plasticity in both native and invasive populations of the same species. We examined the plastic response to temperature for Bromus tectorum populations collected from similar shrub-steppe environments in the Republics of Armenia and Georgia, where it is native, and along an invasive front in California and Nevada. Plants were grown in growth chambers in either ‘warm’ (30/20 °C, day/night) or ‘cold’ (10/5 °C) conditions. Invasive populations exhibited greater adaptive plasticity than natives for freezing tolerance (as measured by chlorophyll a fluorescence), such that invasive populations grown in the cold treatment exhibited the highest tolerance. Invasive populations also exhibited more rapid seedling emergence in response to warm temperatures compared to native populations. The climatic conditions of population source locations were related to emergence timing for invasive populations and to freezing tolerance across all populations combined. Plasticity in growth-related traits such as biomass, allocation, leaf length, and photosynthesis did not differ between native and invasive populations. Rather, some growth-related traits were very plastic across all populations, which may help to dampen differences in biomass in contrasting environments. Thus, invasive populations were found to be particularly plastic for some important traits such as seedling emergence and freezing tolerance, but plasticity at the species level may also be an important factor in the invasive ability of B. tectorum.  相似文献   

18.
气候变暖背景下植物可通过关键性状的表型可塑性来适应环境温度的增加。表型可塑性增强进化假说预测定植到新环境中的入侵植物种群具有演化出更强表型可塑性的潜力。此前对可塑性进化的研究涵盖了外来植物性状对水分条件、光照变化、土壤养分、邻体根系以及天敌防御等的响应, 而较少有研究关注增温条件下植物重要性状的可塑性进化。已有的部分研究多集中在温带和热带地区, 而较少关注入侵植物在高寒地区对增温的响应; 且研究多集中在植物生长相关性状, 较少关注功能性状和防御性状。本研究采用同质园实验比较了喜旱莲子草6个引入地(中国)种群和6个原产地(阿根廷)种群, 在西藏拉萨模拟全天增温2℃处理下的适合度性状、功能性状和防御性状的响应差异。结果表明: (1)高寒地区模拟全天增温显著提高了喜旱莲子草总生物量(+36.4%)、地上生物量(+34.5%)、贮藏根生物量(+51.4%)和毛根生物量(+33.6%), 降低了分枝强度(-19.8%)和比茎长(-30.2%); (2)模拟全天增温使引入地种群的比叶面积和黄酮含量增加, 而原产地种群则相反。这些结果表明高寒地区全天增温2℃对喜旱莲子草可能是一种有利条件。引入地种群的适合度性状对模拟全天增温2℃的响应比原产地种群更强, 而其光能利用相关性状和防御性状的响应可能提升了其在高寒地区的适合度。因此, 在未来全球气候变暖的背景下, 高寒地区温度升高可能更有利于喜旱莲子草引入地种群的定植和扩散。  相似文献   

19.
Abstract. We compared the demographic characteristics of native central-European and invasive USA-populations of Lythrum salicaria growing in similar habitats. Based on the ‘Evolution of increased competitive ability’ (EICA) hypothesis, we predicted that shoot density, height, and biomass, fertility, and fecundity would be less in the European populations due to greater loss of plant material caused by exposure to control agents. Shoot density was significantly greater in most USA-populations, but shoot height and biomass were similar in invasive and native populations growing in similar habitats, especially in growing seasons with greater water availability. The number of fertile shoots was greater for invasive populations, except for those growing in sandy, nutrient-poor substrates, while percent fertility did not differ between populations growing under similar field conditions. Fecundity was also similar for populations growing in nutrient-poor and intermediate habitats, but was significantly greater in USA-populations (89–103 seeds per fruit), compared to European populations (58–64 seeds per fruit), growing in nutrient-rich habitats; seed predators were found in these European populations only. Log-linear analysis of transition frequency matrices showed that the growth of USA-populations is different from European populations, but that habitat effect was strong. Population dynamics were similar for populations growing in nutrient-poor habitats; location was of marginal importance only. USA-populations responded differently from European populations growing in intermediate and nutrient-rich habitats; differences were most pronounced between invasive (center of its North American distribution) and native populations growing in nutrient-rich habitats. The use of insect herbivores as biological control agents in North America will work best against L. salicaria populations growing in nutrient-rich habitats in the center of its invasive distribution, but will be less effective against populations growing in other habitats or portions of its range. Other factors, including nutrient- or water availability, and climate, may be as important as herbivory in affecting invasive populations; these factors interact to control L. salicaria in a more complex manner than thought previously.  相似文献   

20.
Aim Our aim in this study was to document the global biogeographic variation in the effects of soil microbes on the growth of Centaurea solstitialis (yellow starthistle; Asteraceae), a species that has been introduced throughout the world, but has become highly invasive only in some introduced regions. Location  To assess biogeographic variation in plant–soil microbe interactions, we collected seeds and soils from native Eurasian C. solstitialis populations and introduced populations in California, Argentina and Chile. Methods To test whether escape from soil‐borne natural enemies may contribute to the success of C. solstitialis, we compared the performance of plants using seeds and soils collected from each of the biogeographic regions in greenhouse inoculation/sterilization experiments. Results  We found that soil microbes had pervasive negative effects on plants from all regions, but these negative effects were significantly weaker in soils from non‐native ranges in Chile and California than in those from the non‐native range in Argentina and the native range in Eurasia. Main conclusions The biogeographic differences in negative effects of microbes in this study conformed to the enemy‐release hypothesis (ERH) overall, but the strong negative effect of soil biota in Argentina, where C. solstitialis is invasive, and weaker effects in Chile where it is not, indicated that different factors influencing invasion are likely to occur in large scale biogeographic mosaics of interaction strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号