首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinohemoprotein amine dehydrogenase (QHNDH) possesses a cysteine tryptophylquinone (CTQ) prosthetic group that catalyzes the oxidative deamination of primary amines. In addition to CTQ, two heme c cofactors are present in QHNDH that mediate the transfer of the substrate-derived electrons from CTQ to an external electron acceptor. Steady-state kinetic assays yielded relatively small k(cat) values (<6 s(-1)), and the rate-limiting step appears to be the interprotein electron transfer from heme in QHNDH to the external electron acceptor. Transient kinetic studies of the CTQ-dependent reduction of heme in QHNDH by amine substrates yielded different rate constants for different substrates (72, 190, and 162 s(-1) for methylamine, butylamine, and benzylamine, respectively). Deuterium kinetic isotope effect (KIE) values of 5.3, 3.9, and 8.5 were observed, respectively, for the reactions of methylamine, butylamine, and benzylamine. These results suggest that the abstraction of a proton from the alpha-methylene group of the substrate, which occurs concomitant with CTQ reduction, is the rate-limiting step in the CTQ-dependent reduction of hemes in QHNDH by these amine substrates. In contrast, the reaction of 2-phenylethylamine with QHNDH does not exhibit a significant KIE ((H)k(3)/(D)k(3) = 1.05) and exhibits a much smaller rate constant of 16 s(-1). This suggests that for 2-phenylethylamine, the rate-limiting step in the single-turnover reaction is either hydrolysis of the imine reaction intermediate from CTQ or product release prior to intraprotein electron transfer. Analysis of the products of the reactions of QHNDH with chiral deuterated 2-phenylethylamines demonstrated that the enzyme abstracts the pro-S proton of the substrate in a highly stereospecific manner. Inspection of the crystal structure of phenylhydrazine-inhibited QHNDH suggests that Asp33(gamma) is the residue that performs the proton abstraction. On the basis of these results, kinetic and chemical reaction mechanisms for QHNDH are proposed and discussed in the context of the crystal structure of the enzyme.  相似文献   

2.
Whittaker MM  Whittaker JW 《Biochemistry》2001,40(24):7140-7148
Galactose oxidase is a remarkable enzyme containing a metalloradical redox cofactor capable of oxidizing a variety of primary alcohols during enzyme turnover. Recent studies using 1-O-methyl alpha-D-galactopyranoside have revealed an unusually large kinetic isotope effect (KIE) for oxidation of the alpha-deuterated alcohol (kH/kD = 22), demonstrating that cleavage of the 6,6'-di[2H]hydroxymethylene C-H bond is fully rate-limiting for oxidation of the canonical substrate. This step is believed to involve hydrogen atom transfer to the tyrosyl phenoxyl in a radical redox mechanism for catalysis [Whittaker, M. M., Ballou, D. P., and Whittaker, J. W. (1998) Biochemistry 37, 8426-8436]. In the work presented here, the enzyme's unusually broad substrate specificity has allowed us to extend these investigations to a homologous series of benzyl alcohol derivatives, in which remote (meta or para) substituents are used to systematically perturb the properties of the hydroxyl group undergoing oxidation. Quantitative structure-activity relationship (QSAR) correlations over the steady state rate data reveal a shift in the character of the transition state for substrate oxidation over this series, reflected in a change in the magnitude of the observed KIE for these reactions. The observed KIE values have been shown to obey a log-linear correlation over the substituent parameter, Hammett sigma. For the relatively difficult to oxidize nitro derivative, the KIE is large (kH/kD = 12.3), implying rate-limiting C-H bond cleavage for the oxidation reaction. This contribution becomes less important for more easily oxidized substrates (e.g., methoxy derivatives) where a much smaller KIE is observed (kH/kD = 3.6). Conversely, the solvent deuterium KIE is vanishingly small for 4-nitrobenzyl alcohol, but becomes significant for the 4-methoxy derivative (kH2O/kD2O = 1.2). These experiments have allowed us to develop a reaction profile for substrate oxidation by galactose oxidase, consisting of three components (hydroxylic proton transfer, electron transfer, and hydrogen atom transfer) comprising a single-step proton-coupled electron transfer mechanism. Each component exhibits a distinct substituent and isotope sensitivity, allowing them to be identified kinetically. The proton transfer component is unique in being sensitive to the isotopic character of the solvent (H2O or D2O), while hydrogen atom transfer (C-H bond cleavage) is independent of solvent composition but is sensitive to substrate labeling. In contrast, electron transfer processes will in general be less sensitive to isotopic substitution. Our results support a mechanism in which initial proton abstraction from a coordinated substrate activates the alcohol toward inner sphere electron transfer to the Cu(II) metal center in an unfavorable redox equilibrium, forming an alkoxy radical which undergoes hydrogen atom abstraction by the tyrosine-cysteine phenoxyl free radical ligand to form the product aldehyde.  相似文献   

3.
During the catalytic reaction of copper amine oxidase, one of the two prochiral hydrogen atoms at the C1 position of substrate amine is stereoselectively abstracted by a conserved Asp residue serving as a general base. Using stereospecifically deuterium-labeled enantiomers of 2-phenylethylamine, we previously showed that the pro-S alpha-proton is abstracted by the enzyme from Arthrobacter globiformis (AGAO) [Uchida, M., et al. (2003) Biosci. Biotechnol. Biochem. 67, 2664-2667]. More recently, we have also demonstrated that the pro-S selectivity of alpha-proton abstraction is fully retained even in the reaction of a mutant AGAO lacking the catalytic base [Chiu, Y.-C., et al. (2006) Biochemistry 45, 4105-4120]. On the basis of these findings, we have proposed that the stereoselectivity of alpha-proton abstraction is primarily determined by the conformation of the Schiff base intermediate formed between the substrate and the topa quinone cofactor (TPQ), stabilized by the binding of the distal part of the substrate to a hydrophobic pocket of the enzyme. In this conformation, the pro-S hydrogen atom to be abstracted is nearly perpendicular to the plane of the Schiff base-TPQ conjugate system, achieving the maximum overlap of sigma- and pi-orbitals. To further elucidate the stereochemical details, we have synthesized stereospecifically deuterium-labeled enantiomers of ethylamine, a very poor substrate for AGAO, in addition to those structurally related to the preferred substrate, 2-phenylethylamine. In marked contrast to the nearly complete pro-S selectivity of alpha-proton abstraction for most substrates that have been examined, the stereoselectivity for ethylamine decreased significantly to as little as 88%. The crystal structure of AGAO soaked with ethylamine showed very poor electron densities for the substrate Schiff base intermediate, showing that its conformation is not defined uniquely. Thus, the stereoselectivity of alpha-proton abstraction during the copper amine oxidase reaction is closely associated with the conformational flexibility of the substrate Schiff base intermediate.  相似文献   

4.
C-H bond breakage by tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) occurs by vibrationally assisted tunneling (Basran, J., Sutcliffe, M. J., and Scrutton, N. S. (1999) Biochemistry 38, 3218--3222). We show here a similar mechanism in TTQ-dependent aromatic amine dehydrogenase (AADH). The rate of TTQ reduction by dopamine in AADH has a large, temperature independent kinetic isotope effect (KIE = 12.9 +/- 0.2), which is highly suggestive of vibrationally assisted tunneling. H-transfer is compromised with benzylamine as substrate and the KIE is deflated (4.8 +/- 0.2). The KIE is temperature-independent, but reaction rates are strongly dependent on temperature. With tryptamine as substrate reaction rates can be determined only at low temperature as C-H bond cleavage is rapid, and an exceptionally large KIE (54.7 +/- 1.0) is observed. Studies with deuterated tryptamine suggest vibrationally assisted tunneling is the mechanism of deuterium and, by inference, hydrogen transfer. Bond cleavage by MADH using a slow substrate (ethanolamine) occurs with an inflated KIE (14.7 +/- 0.2 at 25 degrees C). The KIE is temperature-dependent, consistent with differential tunneling of protium and deuterium. Our observations illustrate the different modes of H-transfer in MADH and AADH with fast and slow substrates and highlight the importance of barrier shape in determining reaction rate.  相似文献   

5.
Werner RM  Stivers JT 《Biochemistry》2000,39(46):14054-14064
The DNA repair enzyme uracil DNA glycosylase catalyzes the first step in the uracil base excision repair pathway, the hydrolytic cleavage of the N-glycosidic bond of deoxyuridine in DNA. Here we report kinetic isotope effect (KIE) measurements that have allowed the determination of the transition-state structure for this important reaction. The small primary (13)C KIE (=1.010 +/- 0.009) and the large secondary alpha-deuterium KIE (=1.201 +/- 0.021) indicate that (i) the glycosidic bond is essentially completely broken in the transition state and (ii) there is significant sp(2) character at the anomeric carbon. Large secondary beta-deuterium KIEs were observed when [2'R-(2)H] = 1.102 +/- 0.011 and [2'S-(2)H] = 1.106 +/- 0.010. The nearly equal and large magnitudes of the two stereospecific beta-deuterium KIEs indicate strong hyperconjugation between the elongated glycosidic bond and both of the C2'-H2' bonds. Geometric interpretation of these beta-deuterium KIEs indicates that the furanose ring adopts a mild 3'-exo sugar pucker in the transition state, as would be expected for maximal stabilization of an oxocarbenium ion. Taken together, these results strongly indicate that the reaction proceeds through a dissociative transition state, with complete dissociation of the uracil anion followed by addition of water. To our knowledge, this is the first transition-state structure determined for enzymatic cleavage of the glycosidic linkage in a pyrimidine deoxyribonucleotide.  相似文献   

6.
Ketones as electrophilic substrates of lipoxygenase   总被引:1,自引:0,他引:1  
The rate-limiting step of the lipoxygenase reaction involves the abstraction of a hydrogen from the methylene carbon of a 1,4-diene. One possibility for the mechanism of the enzyme is the abstraction of this hydrogen as a proton to generate a carbanionic intermediate or transition state. In order to investigate this possibility, 5-, 8-, 12-, and 15-hydroxy-eicosatetraenoic acid were oxidized to the corresponding ketones and these ketones were assayed as substrates of the 5-, 12-, and 15-lipoxygenases from rat neutrophils, rat platelets, and soybeans, respectively. The ketones were in no case better substrates than arachidonic acid and in some cases the hydroxyeicosatetraenoic acids were equally active as the corresponding ketones. Since no increased rate of oxidation for these electrophilic substrates was observed, it is concluded that no transition state with carbanionic character is generated in the rate-determining step of the lipoxygenase reaction.  相似文献   

7.
The X-ray crystal structures of human purine nucleoside phosphorylase (PNP) with bound inosine or transition-state analogues show His257 within hydrogen bonding distance of the 5'-hydroxyl. The mutants His257Phe, His257Gly, and His257Asp exhibited greatly decreased affinity for Immucillin-H (ImmH), binding this mimic of an early transition state as much as 370-fold (Km/Ki) less tightly than native PNP. In contrast, these mutants bound DADMe-ImmH, a mimic of a late transition state, nearly as well as the native enzyme. These results indicate that His257 serves an important role in the early stages of transition-state formation. Whereas mutation of His257 resulted in little variation in the PNP x DADMe-ImmH x SO4 structures, His257Phe x ImmH x PO4 showed distortion at the 5'-hydroxyl, indicating the importance of H-bonding in positioning this group during progression to the transition state. Binding isotope effect (BIE) and kinetic isotope effect (KIE) studies of the remote 5'-(3)H for the arsenolysis of inosine with native PNP revealed a BIE of 1.5% and an unexpectedly large intrinsic KIE of 4.6%. This result is interpreted as a moderate electronic distortion toward the transition state in the Michaelis complex with continued development of a similar distortion at the transition state. The mutants His257Phe, His257Gly, and His257Asp altered the 5'-(3)H intrinsic KIE to -3, -14, and 7%, respectively, while the BIEs contributed 2, 2, and -2%, respectively. These surprising results establish that forces in the Michaelis complex, reported by the BIEs, can be reversed or enhanced at the transition state.  相似文献   

8.
Copper amine oxidases (EC 1.4.3.6) exhibit atypical stereochemical patterns in the reactions they catalyze. Dopamine and tyramine are oxidized with abstraction of the pro-R hydrogen by the porcine plasma amine oxidase, the pro-S hydrogen by pea seedling amine oxidase and a net nonstereospecific proton abstraction by the bovine plasma enzyme. This provides the first example in which a reaction catalyzed by enzymes in the same formal class occurs by all three possible stereochemical routes. To assess the underlying mechanistic significance of this heterogeneity, we have established the stereochemical course of the oxidation of tyramine by five additional copper amine oxidases using 1H NMR spectroscopy. Reactions catalyzed by rabbit and sheep serum amine oxidases are nonstereospecific. These enzymes exhibit rare mirror image binding with differential flux through two opposite and stereospecific reaction pathways. Differential primary kinetic isotope effects are observed for each mode, 8 and 4.6 for pro-S abstraction and 2.6 and 2.7 for pro-R abstraction by the sheep and rabbit amine oxidases, respectively. Tyramine oxidations catalyzed by the soybean and chick pea amine oxidases and porcine kidney diamine oxidase, however, are all stereospecific, occurring with loss of the pro-S hydrogen at C-1. Solvent exchange profiles are consistent within each stereochemical class of enzyme; the pro-R and nonstereospecific enzymes exchange solvent into C-2 of product aldehydes, the pro-S enzymes do not.  相似文献   

9.
The replacement of the active site nucleophile Glu 358 in Agrobacterium beta-glucosidase by Asn and Gln by site-directed mutagenesis results in essentially complete inactivation of the enzyme, while replacement by Asp generates a mutant with a rate constant for the first step, formation of the glycosylenzyme, some 2500 times lower than that of the native enzyme. This low activity is shown to be a true property of the mutant and not due to contaminating wild-type enzyme by active site titration studies and also through studies of its thermal denaturation and of the pH dependence of the reaction catalyzed. Binding of ground-state inhibitors is affected relatively little by the mutation, while binding of transition-state analogues is greatly impaired, consistent with a principal role for Glu 358 being in transition-state stabilization, not substrate binding. Determination of kinetic parameters for a series of aryl glucosides revealed that the glycosylation step is rate determining for all these substrates in contrast to the native enzyme, where a switch from rate-limiting glycosylation to rate-limiting deglycosylation was observed as substrate reactivity was increased. These results coupled with secondary deuterium kinetic isotope effects of kH/kD = 1.17 and 1.12 measured for the 2,4-dinitrophenyl and p-nitrophenyl glucosides point to a principal role of the nucleophile in stabilizing the cationic transition states and in formation of the covalent intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Many biological C-H activation reactions exhibit nonclassical kinetic isotope effects (KIEs). These nonclassical KIEs are too large (kH/kD > 7) and/or exhibit unusual temperature dependence such that the Arrhenius prefactor KIEs (AH/AD) fall outside of the semiclassical range near unity. The focus of this minireview is to discuss such KIEs within the context of the environmentally coupled hydrogen tunneling model. Full tunneling models of hydrogen transfer assume that protein or solvent fluctuations generate a reactive configuration along the classical, heavy-atom coordinate, from which the hydrogen transfers via nuclear tunneling. Environmentally coupled tunneling also invokes an environmental vibration (gating) that modulates the tunneling barrier, leading to a temperature-dependent KIE. These properties directly link enzyme fluctuations to the reaction coordinate for hydrogen transfer, making a quantum view of hydrogen transfer necessarily a dynamic view of catalysis. The environmentally coupled hydrogen tunneling model leads to a range of magnitudes of KIEs, which reflect the tunneling barrier, and a range of AH/AD values, which reflect the extent to which gating modulates hydrogen transfer. Gating is the primary determinant of the temperature dependence of the KIE within this model, providing insight into the importance of this motion in modulating the reaction coordinate. The potential use of variable temperature KIEs as a direct probe of coupling between environmental dynamics and the reaction coordinate is described. The evolution from application of a tunneling correction to a full tunneling model in enzymatic H transfer reactions is discussed in the context of a thermophilic alcohol dehydrogenase and soybean lipoxygenase-1.  相似文献   

11.
Adenolsylcobalamin-dependent enzymes catalyze free radical mediated reactions of their substrates. Stereochemical methods have been used to establish the nature of the primary radical initiation step in ribonucleoside triphosphate reductase. Kinetic isotope effects have been used to establish a kinetic coupling between cobalt-carbon bond cleavage and hydrogen atom abstraction from the substrate. Isotope effects have also been used to identify rate-limiting steps with wild type and mutant forms of the enzymes and in model reactions to assess tunneling contributions to hydrogen atom transfer steps. Computational methods have been employed to explore the pathways for functional group migration in the radical pathways. Analogs of substrates and of adenosylcobalamin have been used to explore the fidelity of the enzyme active sites and the radical pathways.  相似文献   

12.
We compared the inhibitory and catalytic effects of various monoamines on forms A and B of monoamine oxidase (MAO) on mitochondrial preparations from rat brain in mixed substrate experiments. MAO activity was determined by a radioisotopic assay. MAO showed lower Km values for tryptamine and β-phenylethylamine than for tyramine and serotonin. The Km values of the untreated preparation for tyramine, tryptamine, and β-phenylethylamine obtained were the same as those of the form B enzyme and the Km value for serotonin was the same as that of the form A enzyme. Tyramine and tryptamine were competitive inhibitors of serotonin oxidation and β-phenylethylamine did not bind with form A enzyme or inhibit the oxidation of serotonin, while tyramine and tryptamine were competitive inhibitors of β-phenylethylamine oxidation. Although serotonin was not oxidized by form B enzyme, serotonin was a competitive inhibitor of β-phenylethylamine oxidation. It is suggested that rat brain mitochondrial MAO is characterized by two kinds of binding sites.  相似文献   

13.
The active site residue Asn-437 in protein R1 of the Escherichia coli ribonucleotide reductase makes a hydrogen bond to the 2'-OH group of the substrate. To elucidate its role(s) during catalysis, Asn-437 was engineered by site-directed mutagenesis to several other side chains (Ala, Ser, Asp, Gln). All mutant proteins were incapable of enzymatic turnover but promoted rapid protein R2 tyrosyl radical decay in the presence of the k(cat) inhibitor 2'-azido-2'-deoxy-CDP with similar decay rate constants as the wild-type R1. These results show that all Asn-437 mutants can perform 3'-H abstraction, the first substrate-related step in the reaction mechanism. The most interesting observation was that three of the mutant proteins (N437A/S/D) behaved as suicidal enzymes by catalyzing a rapid tyrosyl radical decay also in reaction mixtures containing the natural substrate CDP. The suicidal CDP-dependent reaction was interpreted to suggest elimination of the substrate's protonated 2'-OH group in the form of water, a step that has been proposed to drive the 3'-H abstraction step. A furanone-related chromophore was formed in the N437D reaction, which is indicative of stalling of the reaction mechanism at the reduction step. We conclude that Asn-437 is essential for catalysis but not for 3'-H abstraction. We propose that the suicidal N437A, N437S, and N437D mutants can also catalyze the water elimination step, whereas the inert N437Q mutant cannot. Our results suggest that Asn-437, apart from hydrogen bonding to the substrate, also participates in the reduction steps of catalysis by class I ribonucleotide reductase.  相似文献   

14.
Copper amine oxidase contains a post-translationally generated quinone cofactor, topa quinone (TPQ), which mediates electron transfer from the amine substrate to molecular oxygen. The overall catalytic reaction is divided into the former reductive and the latter oxidative half-reactions based on the redox state of TPQ. In the reductive half-reaction, substrate amine reacts with the C5 carbonyl group of the oxidized TPQ, forming the substrate Schiff base (TPQ(ssb)), which is then converted to the product Schiff base (TPQ(psb)). During this step, an invariant Asp residue with an elevated pKa is presumed to serve as a general base accepting the alpha proton of the substrate. When Asp298, the putative active-site base in the recombinant enzyme from Arthrobacter globiformis, was mutated into Ala, the catalytic efficiency dropped to a level of about 10(6) orders of magnitude smaller than the wild-type (WT) enzyme, consistent with the essentiality of Asp298. Global analysis of the slow UV/vis spectral changes observed during the reductive half-reaction of the D298A mutant with 2-phenylethylamine provided apparent rate constants for the formation and decay of TPQ(ssb) (k(obs) = 4.7 and 4.8 x 10(-4) s(-1), respectively), both of which are markedly smaller than those of the WT enzyme determined by rapid-scan stopped-flow analysis (k(obs) = 699 and 411 s(-1), respectively). Thus, Asp298 plays important roles not only in the alpha-proton abstraction from TPQ(ssb) but also in other steps in the reductive half-reaction. X-ray diffraction analyses of D298A crystals soaked with the substrate for 1 h and 1 week revealed the structures of TPQ(ssb) and TPQ(psb), respectively, as pre-assigned by single-crystal microspectrophotometry. Consistent with the stereospecificity of alpha-proton abstraction, the pro-S alpha-proton of TPQ(ssb) to be abstracted is positioned nearly perpendicularly to the plane formed by the Schiff-base imine double bond conjugating with the quinone ring of TPQ, so that the orbitals of sigma and pi electrons maximally overlap in the conjugate system. More intriguingly, the pro-S alpha proton of the substrate is released stereospecifically even in the reaction catalyzed by the base-lacking D298A mutant. On the basis of these results, we propose that the stereospecificity of alpha-proton abstraction is primarily determined by the conformation of TPQ(ssb), rather than the relative geometry of TPQ and the catalytic base.  相似文献   

15.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS) is thought to involve a multistep mechanism with several radical intermediates. The proposed mechanism begins with the transfer of the C13 pro-(S) hydrogen atom from the substrate arachidonic acid (AA) to the Tyr385 radical in PGHS, followed by oxygen insertion and several bond rearrangements. The importance of the hydrogen-transfer step to controlling the overall kinetics of cyclooxygenase catalysis has not been directly examined. We quantified the non-competitive primary kinetic isotope effect (KIE) for both PGHS-1 and -2 using several deuterated AAs, including 13-pro-(S) d-AA, 13,13-d2-AA and 10, 10, 13,13-d4-AA. The primary KIE for steady-state cyclooxygenase catalysis, Dkcat, ranged between 1.8 and 2.3 in oxygen electrode measurements. The intrinsic KIE of AA radical formation by C13 pro-(S) hydrogen abstraction in PGHS-1 was estimated to be 1.9-2.3 using rapid freeze-quench EPR kinetic analysis of anaerobic reactions and computer modeling to a mechanism that includes a slow formation of a pentadienyl AA radical and a rapid equilibration of the AA radical with a tyrosyl radical, NS1c. The observation of similar values for steady-state and pre-steady state KIEs suggests that hydrogen abstraction is a rate-limiting step in cyclooxygenase catalysis. The large difference of the observed KIE from that of plant lipoxygenases indicates that PGHS and lipoxygenases have very different mechanisms of hydrogen transfer.  相似文献   

16.
We present a theory of enzymatic hydrogen transfer in which hydrogen tunneling is mediated by thermal fluctuations of the enzyme's active site. These fluctuations greatly increase the tunneling rate by shortening the distance the hydrogen must tunnel. The average tunneling distance is shown to decrease when heavier isotopes are substituted for the hydrogen or when the temperature is increased, leading to kinetic isotope effects (KIEs)--defined as the factor by which the reaction slows down when isotopically substituted substrates are used--that need be no larger than KIEs for nontunneling mechanisms. Within this theory we derive a simple KIE expression for vibrationally enhanced ground state tunneling that is able to fit the data for the bovine serum amine oxidase (BSAO) system, correctly predicting the large temperature dependence of the KIEs. Because the KIEs in this theory can resemble those for nontunneling dynamics, distinguishing the two possibilities requires careful measurements over a range of temperatures, as has been done for BSAO.  相似文献   

17.
Two proteins specifically involved in methanol oxidation in the methylotrophic bacterium Methylobacterium extorquens have been modified by site-directed mutagenesis. Mutation of the proposed active site base (Asp303) to glutamate in methanol dehydrogenase (MDH) gave an active enzyme (D303E-MDH) with a greatly reduced affinity for substrate and with a lower activation energy. Results of kinetic and deuterium isotope studies showed that the essential mechanism in the mutant protein was unchanged, and that the step requiring activation by ammonia remained rate limiting. No spectrally detectable intermediates could be observed during the reaction. The X-ray structure, determined to 3 A resolution, of D303E-MDH showed that the position and coordination geometry of the Ca2+ ion in the active site was altered; the larger Glu303 side chain was coordinated to the Ca2+ ion and also hydrogen bonded to the O5 atom of pyrroloquinoline quinone (PQQ). The properties and structure of the D303E-MDH are consistent with the previous proposal that the reaction in MDH is initiated by proton abstraction involving Asp303, and that the mechanism involves a direct hydride transfer reaction. Mutation of the two adjacent cysteine residues that make up the novel disulfide ring in the active site of MDH led to an inactive enzyme, confirming the essential role of this remarkable ring structure. Mutations of cytochrome c(L), which is the electron acceptor from MDH was used to identify Met109 as the sixth ligand to the heme.  相似文献   

18.
The mechanism of flavin reduction in morphinone reductase (MR) and pentaerythritol tetranitrate (PETN) reductase, and flavin oxidation in MR, has been studied by stopped-flow and steady-state kinetic methods. The temperature dependence of the primary kinetic isotope effect for flavin reduction in MR and PETN reductase by nicotinamide coenzyme indicates that quantum mechanical tunneling plays a major role in hydride transfer. In PETN reductase, the kinetic isotope effect (KIE) is essentially independent of temperature in the experimentally accessible range, contrasting with strongly temperature-dependent reaction rates, consistent with a tunneling mechanism from the vibrational ground state of the reactive C-H/D bond. In MR, both the reaction rates and the KIE are dependent on temperature, and analysis using the Eyring equation suggests that hydride transfer has a major tunneling component, which, unlike PETN reductase, is gated by thermally induced vibrations in the protein. The oxidative half-reaction of MR is fully rate-limiting in steady-state turnover with the substrate 2-cyclohexenone and NADH at saturating concentrations. The KIE for hydride transfer from reduced flavin to the alpha/beta unsaturated bond of 2-cyclohexenone is independent of temperature, contrasting with strongly temperature-dependent reaction rates, again consistent with ground-state tunneling. A large solvent isotope effect (SIE) accompanies the oxidative half-reaction, which is also independent of temperature in the experimentally accessible range. Double isotope effects indicate that hydride transfer from the flavin N5 atom to 2-cyclohexenone, and the protonation of 2-cyclohexenone, are concerted and both the temperature-independent KIE and SIE suggest that this reaction also proceeds by ground-state quantum tunneling. Our results demonstrate the importance of quantum tunneling in the reduction of flavins by nicotinamide coenzymes. This is the first observation of (i) three H-nuclei in an enzymic reaction being transferred by tunneling and (ii) the utilization of both passive and active dynamics within the same native enzyme.  相似文献   

19.
Enzymatic breakage of the substrate C-H bond by Methylophilus methyltrophus (sp. W3A1) methylamine dehydrogenase (MADH) has been studied by stopped-flow spectroscopy. The rate of reduction of the tryptophan tryptophylquinone (TTQ) cofactor has a large kinetic isotope effect (KIE = 16.8 +/- 0.5), and the KIE is independent of temperature. Analysis of the temperature dependence of C-H bond breakage revealed that extreme (ground state) quantum tunneling is responsible for the transfer of the hydrogen nucleus. Reaction rates are strongly dependent on temperature, indicating thermally induced, vibrational motion drives the H-transfer reaction. The data provide direct experimental evidence for enzymatic bond breakage by extreme tunneling driven by vibrational motion of the protein scaffold. The results demonstrate that classical transition state theory and its tunneling derivatives do not adequately describe this enzymatic reaction.  相似文献   

20.
Copper amine oxidases (CAOs) catalyse the oxidation of various aliphatic amines to the corresponding aldehydes, ammonia and hydrogen peroxide. Although CAOs from various organisms share a highly conserved active-site structure including a protein-derived cofactor, topa quinone (TPQ), their substrate specificities differ considerably. To obtain structural insights into the substrate specificity of a CAO from Arthrobacter globiformis (AGAO), we have determined the X-ray crystal structures of AGAO complexed with irreversible inhibitors that form covalent adducts with TPQ. Three hydrazine derivatives, benzylhydrazine (BHZ), 4-hydroxybenzylhydrazine (4-OH-BHZ) and phenylhydrazine (PHZ) formed predominantly a hydrazone adduct, which is structurally analogous to the substrate Schiff base of TPQ formed during the catalytic reaction. With BHZ and 4-OH-BHZ, but not with PHZ, the inhibitor aromatic ring is bound to a hydrophobic cavity near the active site in a well-defined conformation. Furthermore, the hydrogen atom on the hydrazone nitrogen is located closer to the catalytic base in the BHZ and 4-OH-BHZ adducts than in the PHZ adduct. These results correlate well with the reactivity of 2-phenylethylamine and tyramine as preferred substrates for AGAO and also explain why benzylamine is a poor substrate with markedly decreased rate constants for the steps of proton abstraction and the following hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号