首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyphal tip growth is a key feature of filamentous fungi, however, the molecular mechanism(s) that regulate cell polarity are poorly understood. On the other hand, much more is known about polarised growth in the yeast Saccharomyces cerevisiae. Here, the proteins Spa2p, Bni1p, Bud6p and Pea2p form a protein complex named the polarisome known to be important for the assurance of polar growth. We searched the genome of Aspergillus niger and identified homologues for Spa2p, Bni1p, Bud6p but not for Pea2p. We characterised the function of the Spa2p homologue SpaA by determining its cellular localisation and by constructing deletion and overexpressing mutant strains. SpaA was found to be localised exclusively at the hyphal tip, suggesting that SpaA can be used as marker for polarisation. Deletion and overexpression of spaA resulted in reduced growth rate, increased hyphal diameter and polarity defects, indicating that one of the functions of SpaA is to ensure polarity maintenance. In addition, we could show that SpaA is able to complement the defective haploid invasive growth phenotype of a S. cerevisiae SPA2 null mutant. We suggest that the function of SpaA is to ensure maximal polar growth rate in A. niger.  相似文献   

2.
The importance of polarized growth for fungi has elicited significant effort directed at better understanding underlying mechanisms of polarization, with a focus on yeast systems. At sites of tip growth, multiple protein complexes assemble and coordinate to ensure that incoming building material reaches the appropriate destination sites, and polarized growth is maintained. One of these complexes is the polarisome that consists of Spa2, Bud6, Pea2, and Bni1 in Saccharomyces cerevisiae. Filamentous hyphae differ in their development and life style from yeasts and likely regulate polarized growth in a different way. This is expected to reflect on the composition and presence of protein complexes that assemble at the hyphal tip. In this study we searched for polarisome homologues in the model filamentous fungus Aspergillus nidulans and characterized the S. cerevisiae Spa2 and Bud6 homologues, SpaA and BudA. Compared to the S. cerevisiae Spa2, SpaA lacks domain II but has three additional domains that are conserved within filamentous fungi. Gene replacement strains and localization studies show that SpaA functions exclusively at the hyphal tip, while BudA functions at sites of septum formation and possibly at hyphal tips. We show that SpaA is not required for the assembly or maintenance of the Spitzenk?rper. We propose that the core function of the polarisome in polarized growth is maintained but with different contributions of polarisome components to the process.  相似文献   

3.
The p21-activated kinases Ste20p and Cla4p carry out undefined functions that are essential for viability during budding in Saccharomyces cerevisiae. To gain insight into the roles of Ste20p, we have used a synthetic lethal mutant screen to identify additional genes that are required in the absence of Cla4p. Altogether, we identified 65 genes, including genes with roles in cell polarity, mitosis, and cell wall maintenance. Herein, we focus on a set that defines a function carried out by Bni1p and several of its interacting proteins. We found that Bni1p and a group of proteins that complex with Bni1p (Bud6p, Spa2p, and Pea2p) are essential in a cla4delta mutant background. Bni1p, Bud6p, Spa2, and Pea2p are members of a group of polarity determining proteins referred to as the polarisome. Loss of polarisome proteins from a cla4delta strain causes cells to form elongated buds that have mislocalized septin rings. In contrast, other proteins that interact with or functionally associate with Bni1p and have roles in nuclear migration and cytokinesis, including Num1p and Hof1p, are not essential in the absence of Cla4p. Finally, we have found that Bni1p is phosphorylated in vivo, and a substantial portion of this phosphorylation is dependent on STE20. Together, these results suggest that one function of Ste20p may be to activate the polarisome complex by phosphorylation of Bni1p.  相似文献   

4.
Formin homology (FH) proteins are implicated in cell polarization and cytokinesis through actin organization. There are two FH proteins in the yeast Saccharomyces cerevisiae, Bni1p and Bnr1p. Bni1p physically interacts with Rho family small G proteins (Rho1p and Cdc42p), actin, two actin-binding proteins (profilin and Bud6p), and a polarity protein (Spa2p). Here we analyzed the in vivo localization of Bni1p by using a time-lapse imaging system and investigated the regulatory mechanisms of Bni1p localization and function in relation to these interacting proteins. Bni1p fused with green fluorescent protein localized to the sites of cell growth throughout the cell cycle. In a small-budded cell, Bni1p moved along the bud cortex. This dynamic localization of Bni1p coincided with the apparent site of bud growth. A bni1-disrupted cell showed a defect in directed growth to the pre-bud site and to the bud tip (apical growth), causing its abnormally spherical cell shape and thick bud neck. Bni1p localization at the bud tips was absolutely dependent on Cdc42p, largely dependent on Spa2p and actin filaments, and partly dependent on Bud6p, but scarcely dependent on polarized cortical actin patches or Rho1p. These results indicate that Bni1p regulates polarized growth within the bud through its unique and dynamic pattern of localization, dependent on multiple factors, including Cdc42p, Spa2p, Bud6p, and the actin cytoskeleton.  相似文献   

5.
Characteristic features of morphogenesis in filamentous fungi are sustained polar growth at tips of hyphae and frequent initiation of novel growth sites (branches) along the extending hyphae. We have begun to study regulation of this process on the molecular level by using the model fungus Ashbya gossypii. We found that the A. gossypii Ras-like GTPase Rsr1p/Bud1p localizes to the tip region and that it is involved in apical polarization of the actin cytoskeleton, a determinant of growth direction. In the absence of RSR1/BUD1, hyphal growth was severely slowed down due to frequent phases of pausing of growth at the hyphal tip. During pausing events a hyphal tip marker, encoded by the polarisome component AgSPA2, disappeared from the tip as was shown by in vivo time-lapse fluorescence microscopy of green fluorescent protein-labeled AgSpa2p. Reoccurrence of AgSpa2p was required for the resumption of hyphal growth. In the Agrsr1/bud1Delta deletion mutant, resumption of growth occurred at the hyphal tip in a frequently uncoordinated manner to the previous axis of polarity. Additionally, hyphal filaments in the mutant developed aberrant branching sites by mislocalizing AgSpa2p thus distorting hyphal morphology. These results define AgRsr1p/Bud1p as a key regulator of hyphal growth guidance.  相似文献   

6.
Rho1p is a yeast homolog of mammalian RhoA small GTP-binding protein. Rho1p is localized at the growth sites and required for bud formation. We have recently shown that Bni1p is a potential target of Rho1p and that Bni1p regulates reorganization of the actin cytoskeleton through interactions with profilin, an actin monomer-binding protein. Using the yeast two-hybrid screening system, we cloned a gene encoding a protein that interacted with Bni1p. This protein, Spa2p, was known to be localized at the bud tip and to be implicated in the establishment of cell polarity. The C-terminal 254 amino acid region of Spa2p, Spa2p(1213–1466), directly bound to a 162-amino acid region of Bni1p, Bni1p(826–987). Genetic analyses revealed that both the bni1 and spa2 mutations showed synthetic lethal interactions with mutations in the genes encoding components of the Pkc1p-mitogen-activated protein kinase pathway, in which Pkc1p is another target of Rho1p. Immunofluorescence microscopic analysis showed that Bni1p was localized at the bud tip in wild-type cells. However, in the spa2 mutant, Bni1p was not localized at the bud tip and instead localized diffusely in the cytoplasm. A mutant Bni1p, which lacked the Rho1p-binding region, also failed to be localized at the bud tip. These results indicate that both Rho1p and Spa2p are involved in the localization of Bni1p at the growth sites where Rho1p regulates reorganization of the actin cytoskeleton through Bni1p.  相似文献   

7.
Gic2p is a Cdc42p effector which functions during cytoskeletal organization at bud emergence and in response to pheromones, but it is not understood how Gic2p interacts with the actin cytoskeleton. Here we show that Gic2p displayed multiple genetic interactions with Bni1p, Bud6p (Aip3p), and Spa2p, suggesting that Gic2p may regulate their function in vivo. In support of this idea, Gic2p cofractionated with Bud6p and Spa2p and interacted with Bud6p by coimmunoprecipitation and two-hybrid analysis. Importantly, localization of Bni1p and Bud6p to the incipient bud site was dependent on active Cdc42p and the Gic proteins but did not require an intact actin cytoskeleton. We identified a conserved domain in Gic2p which was necessary for its polarization function but dispensable for binding to Cdc42p-GTP and its localization to the site of polarization. Expression of a mutant Gic2p harboring a single-amino-acid substitution in this domain (Gic2p(W23A)) interfered with polarized growth in a dominant-negative manner and prevented recruitment of Bni1p and Bud6p to the incipient bud site. We propose that at bud emergence, Gic2p functions as an adaptor which may link activated Cdc42p to components involved in actin organization and polarized growth, including Bni1p, Spa2p, and Bud6p.  相似文献   

8.
The yeast protein Spa2p localizes to growth sites and is important for polarized morphogenesis during budding, mating, and pseudohyphal growth. To better understand the role of Spa2p in polarized growth, we analyzed regions of the protein important for its function and proteins that interact with Spa2p. Spa2p interacts with Pea2p and Bud6p (Aip3p) as determined by the two-hybrid system; all of these proteins exhibit similar localization patterns, and spa2Δ, pea2Δ, and bud6Δ mutants display similar phenotypes, suggesting that these three proteins are involved in the same biological processes. Coimmunoprecipitation experiments demonstrate that Spa2p and Pea2p are tightly associated with each other in vivo. Velocity sedimentation experiments suggest that a significant portion of Spa2p, Pea2p, and Bud6p cosediment, raising the possibility that these proteins form a large, 12S multiprotein complex. Bud6p has been shown previously to interact with actin, suggesting that the 12S complex functions to regulate the actin cytoskeleton. Deletion analysis revealed that multiple regions of Spa2p are involved in its localization to growth sites. One of the regions involved in Spa2p stability and localization interacts with Pea2p; this region contains a conserved domain, SHD-II. Although a portion of Spa2p is sufficient for localization of itself and Pea2p to growth sites, only the full-length protein is capable of complementing spa2 mutant defects, suggesting that other regions are required for Spa2p function. By using the two-hybrid system, Spa2p and Bud6p were also found to interact with components of two mitogen-activated protein kinase (MAPK) pathways important for polarized cell growth. Spa2p interacts with Ste11p (MAPK kinase [MEK] kinase) and Ste7p (MEK) of the mating signaling pathway as well as with the MEKs Mkk1p and Mkk2p of the Slt2p (Mpk1p) MAPK pathway; for both Mkk1p and Ste7p, the Spa2p-interacting region was mapped to the N-terminal putative regulatory domain. Bud6p interacts with Ste11p. The MEK-interacting region of Spa2p corresponds to the highly conserved SHD-I domain, which is shown to be important for mating and MAPK signaling. spa2 mutants exhibit reduced levels of pheromone signaling and an elevated level of Slt2p kinase activity. We thus propose that Spa2p, Pea2p, and Bud6p function together, perhaps as a complex, to promote polarized morphogenesis through regulation of the actin cytoskeleton and signaling pathways.  相似文献   

9.
Formins are conserved proteins that nucleate actin assembly and tightly associate with the fast growing barbed ends of actin filaments to allow insertional growth. Most organisms express multiple formins, but it has been unclear whether they have similar or distinct activities and how they may be regulated differentially. We isolated and compared the activities of carboxyl-terminal fragments of the only two formins expressed in Saccharomyces cerevisiae, Bni1 and Bnr1. Bnr1 was an order of magnitude more potent than Bni1 in actin nucleation and processive capping, and unlike Bni1, Bnr1 bundled actin filaments. Profilin bound directly to Bni1 and Bnr1 and regulated their activities similarly. However, the cell polarity factor Bud6/Aip3 specifically bound to and stimulated Bni1, but not Bnr1. This was unexpected, since previous two-hybrid studies suggested Bud6 interacts with both formins. We mapped Bud6 binding activity to specific residues in the carboxyl terminus of Bni1 that are adjacent to its diaphanous autoregulatory domain (DAD). Fusion of the carboxyl terminus of Bni1 to Bnr1 conferred Bud6 stimulation to a Bnr1-Bni1 chimera. Thus, Bud6 differentially stimulates Bni1 and not Bnr1. We found that Bud6 is up-regulated during bud growth, when it is delivered to the bud tip on Bni1-nucleated actin cables. We propose that Bud6 stimulation of Bni1 promotes robust cable formation, which in turn delivers more Bud6 to the bud tip, reinforcing polarized cell growth through a positive feedback loop.  相似文献   

10.
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.  相似文献   

11.
Fungi can grow in a variety of growth forms: yeast, pseudohyphae and hyphae. The human fungal pathogen Candida albicans can grow in all three of these forms. In this fungus, hyphal growth is distinguished by the presence of a Spitzenk?rper-like structure at the hyphal tip and a band of septin bars around the base of newly evaginated germ tubes. The budding yeast Saccharomyces cerevisiae grows as yeast and pseudohyphae, but is not normally considered to show hyphal growth. We show here that in mating projections of both C. albicans and S. cerevisiae a Spitzenk?rper-like structure is present at the growing tip and a band of septin bars is present at the base. Furthermore, in S. cerevisiae mating projections, Spa2 and Bni1 form a cap to the 3-dimensional ball of FM4-64 staining, exactly as previously observed in C. albicans hyphae, suggesting that the putative Spitzenk?rper may be a distinct structure from the polarisome. Taken together this work shows that mating projections of both S. cerevisiae and C. albicans show the key characteristics of hyphal growth.  相似文献   

12.
13.
The increasing evidence linking regulation of polar growth and pathogenicity in fungi has elicited a significant effort devoted to produce a better understanding of mechanisms determining polarization in pathogenic fungi. Here we characterize in the phytopathogenic basidiomycete Ustilago maydis, the Spa2 protein, a well-known component of polarisome, firstly described in Saccharomyces cerevisiae. U. maydis display a dimorphic switch between budding growth of hapoid cells and filamentous growth of the dikaryon. During yeast growth, a GFP-tagged Spa2 protein localized to distinct growth sites in a cell cycle-specific manner, while during hyphal growth is persistently located to hyphal tips. Deletion of spa2 gene produces rounder budding cells and thicker filaments than wild-type cells, suggesting a role of Spa2 for the determination of the growth area in U. maydis. We also address the connections between Spa2 and the actin- and microtubule-cytoskeleton. We found that the absence of Spa2 does not affect cytoskeleton organization and strikingly, interference with actin filament or microtubule formation does not affect the polar localization of Spa2. In contrast, defects in the small GTPase Rac1 seems to affect the ability of Spa2 to locate to precise sites at the tip cell. Finally, to our surprise, we found that cells defectives in Spa2 function were as pathogenic as wild-type cells.  相似文献   

14.
Bud6p is a component of a polarisome that controls cell polarity in Saccharomyces cerevisiae. In this study, we investigated the role of the Candida albicans Bud6 protein (CaBud6p) in cell polarity and hyphal development. CaBud6p, which consists of 703 amino acids, had 37% amino-acid sequence identity with the Bud6 protein of S. cerevisiae. The homozygous knock-out of CaBUD6 resulted in several abnormal phenotypes, such as a round and enlarged cells, widened bud necks, and a random budding pattern. In hypha-inducing media, the mutant cells had markedly swollen tips and a reduced ability to switch from yeast to hypha. In addition, a yeast two-hybrid analysis showed a physical interaction between CaBud6p and CaAct1p, which suggests that CaBud6p may be involved in actin cable organization, like Bud6p in S. cerevisiae. Taken together, these results indicate that CaBud6 plays an important role in the polarized growth of C. albicans.  相似文献   

15.
Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not for its maintenance after the ring converts to a septin collar. In bni1Delta cla4-75-td mutant, septins were recruited to the incipient budding site. However, the septin ring was not assembled, and septins remained at the polarized growing sites. Bni1p, a formin family protein, is a member of the polarisome complex with Spa2p, Bud6p, and Pea2p. All spa2Delta cla4-75-td, bud6Delta cla4-75-td, and pea2Delta cla4-75-td mutants showed defects in septin ring assembly. Bni1p stimulates actin polymerization for the formation of actin cables. Point mutants of BNI1 that are specifically defective in actin cable formation also exhibited septin ring assembly defects in the absence of Cla4p. Consistently, treatment of cla4Delta mutant with the actin inhibitor latrunculin A inhibited septin ring assembly. Our results suggest that polarisome components and Cla4p are required for the initial assembly of the septin ring and that the actin cytoskeleton is involved in this process.  相似文献   

16.
Candida albicans, the most prevalent fungal pathogen of humans, causes superficial mycoses, invasive mucosal infections, and disseminated systemic disease. Many studies have shown an intriguing association between C. albicans morphogenesis and the pathogenesis process. For example, hyphal cells have been observed to penetrate host epithelial cells at sites of wounds and between cell junctions. Ras- and Rho-type GTPases regulate many morphogenetic processes in eukaryotes, including polarity establishment, cell proliferation, and directed growth in response to extracellular stimuli. We found that the C. albicans Ras-like GTPase Rsr1p and its predicted GTPase-activating protein Bud2p localized to the cell cortex, at sites of incipient daughter cell growth, and provided landmarks for the positioning of daughter yeast cells and hyphal cell branches, similar to the paradigm in the model yeast Saccharomyces cerevisiae. However, in contrast to S. cerevisiae, CaRsr1p and CaBud2p were important for morphogenesis: C. albicans strains lacking Rsr1p or Bud2p had abnormal yeast and hyphal cell shapes and frequent bends and promiscuous branching along the hypha and were unable to invade agar. These defects were associated with abnormal actin patch polarization, unstable polarisome localization at hyphal tips, and mislocalized septin rings, consistent with the idea that GTP cycling of Rsr1p stabilizes the axis of polarity primarily to a single focus, thus ensuring normal cell shape and a focused direction of polarized growth. We conclude that the Rsr1p GTPase functions as a polarity landmark for hyphal guidance and may be an important mediator of extracellular signals during processes such as host invasion.  相似文献   

17.
The RHO1 gene encodes a homologue of mammalian RhoA small G-protein in the yeast Saccharomyces cerevisiae. Rho1p is required for bud formation and is localized at a bud tip or a cytokinesis site. We have recently shown that Bni1p is a potential target of Rho1p. Bni1p shares the FH1 and FH2 domains with proteins involved in cytokinesis or establishment of cell polarity. In S. cerevisiae, there is an open reading frame (YIL159W) which encodes another protein having the FH1 and FH2 domains and we have named this gene BNR1 (BNI1 Related). Bnr1p interacts with another Rho family member, Rho4p, but not with Rho1p. Disruption of BNI1 or BNR1 does not show any deleterious effect on cell growth, but the bni1 bnr1 mutant shows a severe temperature-sensitive growth phenotype. Cells of the bni1 bnr1 mutant arrested at the restrictive temperature are deficient in bud emergence, exhibit a random distribution of cortical actin patches and often become multinucleate. These phenotypes are similar to those of the mutant of PFY1, which encodes profilin, an actin-binding protein. Moreover, yeast two-hybrid and biochemical studies demonstrate that Bni1p and Bnr1p interact directly with profilin at the FH1 domains. These results indicate that Bni1p and Bnr1p are potential targets of the Rho family members, interact with profilin and regulate the reorganization of actin cytoskeleton.  相似文献   

18.
Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.  相似文献   

19.
Saccharomyces cerevisiae Spa2p is a component of polarisome that controls cell polarity. Here, we have characterized the role of its homologue, CaSpa2p, in the polarized growth in Candida albicans. During yeast growth, GFP-tagged CaSpa2p localized to distinct growth sites in a cell cycle-dependent manner, while during hyphal growth it persistently localized to hyphal tips throughout the cell cycle. Persistent tip localization of the protein was also observed in Catup1Delta and Canrg1Delta, mutants constitutive for filamentous growth. Caspa2Delta exhibited defects in polarity establishment and maintenance, such as random budding and failure to confine growth to a small surface area leading to round cells with wide, elongated bud necks and markedly thicker hyphae. It was also defective in nuclear positioning, presumably a result of defective interactions between cytoplasmic microtubules with certain polarity determinants. The highly conserved SHD-I and SHD-V domains were found to be important and responsible for different aspects of CaSpa2p function. Caspa2Delta exhibited no virulence in the mouse systemic candidiasis model. Because of the existence of distinct growth forms and the easy control of the switch between them in vitro, C. albicans may serve as a useful model in cell polarity research.  相似文献   

20.
Actin filaments are dynamically reorganized to accommodate ever-changing cellular needs for intracellular transport, morphogenesis, and migration. Formins, a major family of actin nucleators, are believed to function as direct effectors of Rho GTPases, such as the polarity regulator Cdc42p. However, the presence of extensive redundancy has made it difficult to assess the in vivo significance of the low-affinity Rho GTPase–formin interaction and specifically whether Cdc42p polarizes the actin cytoskeleton via direct formin binding. Here we exploit a synthetically rewired budding yeast strain to eliminate the redundancy, making regulation of the formin Bni1p by Cdc42p essential for viability. Surprisingly, we find that direct Cdc42p–Bni1p interaction is dispensable for Bni1p regulation. Alternative paths linking Cdc42p and Bni1p via “polarisome” components Spa2p and Bud6p are also collectively dispensable. We identify a novel regulatory input to Bni1p acting through the Cdc42p effector, Gic2p. This pathway is sufficient to localize Bni1p to the sites of Cdc42p action and promotes a polarized actin organization in both rewired and wild-type contexts. We suggest that an indirect mechanism linking Rho GTPases and formins via Rho effectors may provide finer spatiotemporal control for the formin-nucleated actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号