首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The AUG-dependent formation of an 80 S ribosomal initiation complex was studied using purified rabbit reticulocyte initiation factors radiolabeled by reductive methylation. The radiolabeled initiation factors were as biologically active as untreated factors. Reaction mixtures containing a variety of components (AUG, GTP, Met-tRNAf, initiation factors, and 40 S and 60 S ribosomal subunits) were incubated at 30 degrees C and then analyzed on linear sucrose gradients for the formation of ribosomal complexes. The results show that both eukaryotic initiation factor (eIF)-3 and the ternary complex (eIF-2.GTP.Met-tRNAf) bind independently to the 40 S subunit and each of these components enhances the binding of the other. All of the polypeptides of eIF-2 and eIF-3 participate in this binding. Formation of an 80 S ribosomal complex requires eIF-5 and 60 S subunits in a reaction that is stimulated by eIF-4C. Both eIF-2 and eIF-3 are released from the 40 S preinitiation complex during formation of the 80 S initiation complex. Release of eIF-2 and eIF-3 does not occur and 80 S ribosomal complexes are not formed if GTP is replaced by a nonhydrolyzable analog such as guanosine 5'-O3-(1,2-mu-imido)triphosphate. Despite a variety of attempts, it has not yet been possible to demonstrate binding of eIF-4C, eIF-4D, or eIF-5 to either 40 S or 80 S ribosomal complexes.  相似文献   

2.
Aurintricarboxylic acid and pactamycin inhibited initiation factor catalyzed reassociation of ribosomal subunits to form 80S couples and subsequent polyphenylalanine synthesis although their effects were qualitatively different. The two inhibitors prevented the formation of 80S monomers if they were present with 40S subunits in the reassociation mixture before addition of large subunits; they did not inhibit protein synthesis nor reassociation if they were added with the 60S subunits after formation of a small subunit initiation complex. Thus creation of a 40S initiation complex precedes addition of the large subunit and formation of an 80S monomer. An additional finding was that aurintricarboxylic acid preferentially inhibited the formation of inactive 40S–60S couples.  相似文献   

3.
40 S ribosomal subunits of Artemia salina embryos can bind formylmethionyl-transfer RNAf non-enzymically, i.e., in the absence of initiation factors. This, like the enzymic reaction, is largely AUG-dependent. Much more fMet-tRNAf is bound by 80 S ribosomes but, in this case, a large fraction (about two-thirds) of the binding is AUG-independent. Whereas the AUG-dependent binding is very sensitive to edeine, a potent initiation inhibitor, the AUG-independent binding is resistant to this antibiotic. Virtually all of the bound fMet-tRNAf is in all cases capable of reacting with puromycin to form fMet-puromycin; hence the bound aminoaoyl-tRNA is in the peptidyl (donor) site of the 80 S ribosome. Non-acylated tRNAs also bind to this site with high affinity in a codon-independent reaction and block the 80 S binding of fMet-tRNAf. The properties of the peptidyl site are consistent with a non-decoding site which harbors the initiator aminoacyl-tRNA, when the 80 S initiation complex is formed, and to which every molecule of tRNA remains temporarily attached following peptide bond synthesis.  相似文献   

4.
Studies on the recycling of eukaryotic initiation factor 2 (eIF-2) during protein synthesis in normal and heme-deficient reticulocyte lysates indicate that eIF-2 binds physiologically to the 60 S ribosomal subunit. Several findings suggest that the 60 S subunit serves as a carrier for eIF-2 during protein synthesis. The addition of purified eIF-2 (beta-32P) to normal hemin-supplemented lysates results in its binding to polyribosomal 60 S subunits; the binding is temperature-dependent. In lysates inhibited by heme deficiency, phosphorylated eIF-2 alpha can be detected on polyribosomal 60 S subunits early in the initial linear phase of protein synthesis; after polyribosomal disaggregation and shut-off of protein synthesis, phosphorylated eIF-2 alpha accumulates on free 60 S ribosome subunits and on the 60 S subunits of 80 S ribosome couples. The phosphorylated eIF-2 alpha associated with the 60 S subunits in heme-deficient lysates appears to be present as the binary complex [eIF-2 (alpha P) X GDP]; the binding of this complex to the 60 S subunit is tight and is not affected by treatment with 25 mM EDTA or by sedimentation in sucrose gradients. Reversal of the inhibition of protein synthesis in heme-deficient lysates by the addition of reversing factor results in a rapid binding of reversing factor to the 60 S subunits and a concomitant dissociation of [eIF-2(alpha P) X GDP]. These findings suggest that the [eIF-2 X GDP] binary complex formed during the assembly of the 80 S initiation complex binds to the 60 S subunit of polyribosomes and is subsequently released by the action of reversing factor.  相似文献   

5.
In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.  相似文献   

6.
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.  相似文献   

7.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

8.
The eukaryotic initiation factor (eIF)-5 mediates hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. The eIF-2.GDP formed under these conditions is released from the 40 S ribosomal subunit while initiator Met-tRNA(f) remains bound. The released eIF-2.GDP can participate in an eIF-2B-catalyzed GDP/GTP exchange reaction to reform the Met-tRNA(f).eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were also present in an eIF-5-catalyzed reaction, the eIF-2.GDP produced remained bound to the 60 S ribosomal subunit of the 80 S initiation complex. When such an 80 S initiation complex, containing bound eIF-2.GDP, was incubated with GTP and eIF-2B, GDP was released. However, eIF-2 still remained bound to the ribosomes and was unable to form a Met-tRNA(f)l.eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were preincubated with either free eIF-2 or with eIF-2.eIF-2B complex and then added to a reaction containing both the 40 S initiation complex and eIF-5, the eIF-2.GDP produced did not bind to the 60 S ribosomal subunits but was released from the ribosomes. Thus, the 80 S initiation complex formed under these conditions did not contain bound eIF-2.GDP. Under similar experimental conditions, preincubation of 60 S ribosomal subunits with purified eIF-2B (free of eIF-2) failed to cause release of eIF-2.GDP from the ribosomal initiation complex. These results suggest that 60 S ribosome-bound eIF-2.GDP does not act as a direct substrate for eIF-2B-mediated release of eIF-2 from ribosomes. Rather, the affinity of 60 S ribosomal subunits for either eIF-2, or the eIF-2 moiety of the eIF-2.eIF-2B complex, prevents association of 60 S ribosomal subunits with eIF-2.GDP formed in the initiation reaction. This ensures release of eIF-2 from ribosomes following hydrolysis of GTP bound to the 40 S initiation complex.  相似文献   

9.
Recently a ribosome dissociation factor that stimulates natural mRNA translation has been isolated from extracts of wheat germ. In this investigation, we have studied the subunit site of action of the purified ribosome dissociation factor (eucaryotic initiation), eIF-6. The following evidence strongly indicates that eIF-6 acts as a dissociation factor by binding to the 60 S ribosomal subunit and preventing its interaction with the 40 S subunit. Incubation of 60 S subunits with eIF-6 reduces the formation of 80 S monosomes when 40 S subunits are subsequently added at 5 mm Mg2+. The 40 S subunits preincubated with eIF-6 reassociate normally with 60 S subunits. 14C-labeled eIF-6 binds to 60 S subunits but not to 40 S subunits. Slight binding to 80 S ribosomes is also observed. The interaction of eIF-6 with the 60 S subunit requires an elevated temperature, and occurs rapidly at 37 °C.  相似文献   

10.
Glutaraldehyde fixation was used to analyze the mechanism of reassociation of ribosomal subunits catalyzed by a factor in rat liver cytosol. Unstable 40S–60S couples formed spontaneously in buffer alone; the couples were dissociated by hydrostatic pressure during centrifugation unless they were fixed with glutaraldehyde. Increased numbers of stable 80S ribosomes were formed in the presence of poly (U), Phe-tRNA and G-25 fraction (which contains the initiation factor EIF-1). The factor would seem then to both increase formation of 80S ribosomes and stabilize the monomer. An additional effect of the factor is to inhibit the formation of the unstable 40S–60S couples which form in the presence of Phe-tRNA alone.  相似文献   

11.
The assembly of initiation complexes is studied in a protein synthesis initiation assay containing ribosomal subunits, globin [125I]mRNA, [3H]Met-tRNAf, seven purified initiation factors, ATP and GTP. By omitting single components from the initiation assay, specific roles of the initiation factors, ATP and GTP are demonstrated. The initiation factor eIF-2 is required for the binding of Met-tRNAf to the 40 S ribosomal subunit. The initial Met-tRNAf binding to the small ribosomal subunit is a stringent prerequisite for the subsequent mRNA binding. The initiation factors eIF-3, eIF-4A, eIF-4B and eIF-4C together with ATP promote the binding of mRNA to the 40 S initiation complex. The association of the 40 S initiation complex with the 60 S ribosome subunit to form an 80 S initiation complex is mediated by the initiation factor eIF-5 and requires the hydrolysis of GTP. The factor eIF-1 gives a twofold overall stimulation of initiation complex formation. A model of the sequential steps in the assembly of the 80 S initiation complex in mammalian protein synthesis is presented.  相似文献   

12.
The formation and release of an eukaryotic initiation factor (eIF)-2 X GDP binary complex during eIF-5-mediated assembly of an 80 S ribosomal polypeptide chain initiation complex have been studied by sucrose gradient centrifugation analysis. Isolated 40 S initiation complex reacts with eIF-5 and 60 S ribosomal subunits to form an 80 S ribosomal initiation complex with concomitant hydrolysis of an equimolar amount of bound GTP to GDP and Pi. Sucrose gradient analysis of reaction products revealed that GDP was released from ribosomes as an eIF-2 X GDP complex. Evidence is presented that eIF-5-mediated hydrolysis releases the GTP bound to the 40 S initiation complex as an intact eIF-2 X GDP complex rather than as free GDP and eIF-2 which subsequently recombine to form the binary complex. Furthermore, formation and release of eIF-2 X GDP from the ribosomal complex do not require concomitant formation of an 80 S initiation complex since both reactions occur efficiently when the 40 S initiation complex reacts with eIF-5 in the absence of 60 S ribosomal subunits. These results, along with the observation that the 40 S initiation complex formed with the nonhydrolyzable analogue of GTP, 5'-guanylylmethylene diphosphonate, can neither join a 60 S ribosomal subunit nor releases ribosome-bound eIF-2, suggest that following eIF-5-mediated hydrolysis of GTP bound to the 40 S initiation complex, both Pi and eIF-2 X GDP complex are released from ribosomes prior to the joining of 60 S ribosomal subunits to the 40 S initiation complex.  相似文献   

13.
Binding of mRNA leader sequences to ribosomes was studied in conditions of a cell-free translation system based on wheat germ extract. Leader sequence of TMV mRNA (the so-called omega-RNA sequence) was able to bind simultaneously 80S ribosome and 40S ribosomal subunit. It was found that nucleotide substitutions in omega-RNA resulting in destabilization of RNA structure have no effect on the complex formation with both 80S ribosome and 40S ribosomal subunit. Leader sequence of globin mRNA is also able to form a similar joint complex. It is supposed that the ability of mRNA leader sequences to bind simultaneously 80S ribosome and 40S subunit is independent of leader nature and may reflect previously unknown eukaryotic mechanisms of translation initiation.  相似文献   

14.
Hepatitis C virus uses an internal ribosome entry site (IRES) in the viral RNA to directly recruit human 40S ribosome subunits during cap-independent translation initiation. Although IRES-mediated translation initiation is not subject to many of the regulatory mechanisms that control cap-dependent translation initiation, it is unknown whether other noncanonical protein factors are involved in this process. Thus, a global protein composition analysis of native and IRES-bound 40S ribosomal complexes has been conducted to facilitate an understanding of the IRES ribosome recruitment mechanism. A combined top-down and bottom-up mass spectrometry approach was used to identify both the proteins and their posttranslational modifications (PTMs) in the native 40S subunit and the IRES recruited translation initiation complex. Thirty-one out of a possible 32 ribosomal proteins were identified by combining top-down and bottom-up mass spectrometry techniques. Proteins were found to contain PTMs, including loss of methionine, acetylation, methylation, and disulfide bond formation. In addition to the 40S ribosomal proteins, RACK1 was consistently identified in the 40S fraction, indicating that this protein is associated with the 40S subunit. Similar methodology was then applied to the hepatitis C virus IRES-bound 40S complex. Two 40S ribosomal proteins, RS25 and RS29, were found to contain different PTMs than those in the native 40S subunit. In addition, RACK1, eukaryotic initiation factor 3 proteins and nucleolin were identified in the IRES-mediated translation initiation complex.  相似文献   

15.
16.
17.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

18.
The 60Sn and 40Sn subunit ribosome synthesis declined significantly in Yoshida rat ascites hepatoma AH-130 cells from the log phase to the plateau phase of the in vivo growth. Two main classes of 40Sn particles with protein/RNA ratios of 1.82 (p2) and 1.20 (p3) and a minor "heavy" one with protein/RNA ratio of 0.96 (p1) could be distinguished reproducibly by their ultraviolet absorption after sucrose zone sedimentation. The p2 particles appeared the dominating class in log phase cells. In plateau phase cells a decrease of p2 and an increase of p3 particles was observed. Under these conditions the p1 particles and the peaks corresponding to 60Sn subunits and to 80S ribosomes were also increased. Newly synthetized 40Sn particles banded in the p3 region of the gradient and p2 particles originated from them. These particles entered into the ribosomal cycle and contained poly(A) RNA. Formation of radioactive 80S couples by subunits entering into the ribosomal cycle was markedly stimulated in log phase cells and almost completely blocked in cells at the plateau phase of growth.  相似文献   

19.
The sulfhydryl-directed fluorescent reagent, 5-iodoacetamidofluorescein (IAF), reacts differently with proteins from the 60 S ribosomal subunit of Saccharomyces cerevisiae when this subunit is free as opposed to being contained within the 80 S ribosome. When the 80 S ribosomes and the free 60 S subunits were labeled with IAF, the specific fluorescence intensity (fluorescence intensity unit/A260 60 S subunit) of the subsequently derived 60 S was 16.3 and 5.4, respectively. Gel analysis showed that proteins L7 and L26 were selectively labeled and contained greater than 90% of the total fluorescent label, when 80 S ribosomes were labeled. When free 60 S subunits were labeled, six additional proteins were labeled. Both types of modified 60 S subunits were equally capable to support protein synthesis in vitro. Reassociation of the IAF-labeled derived and free 60 S subunits with unmodified 40 S subunits resulted in a maximum of 5-7% decrease and a 3-fold increase, respectively, in the fluorescence intensity without a shift in the emission maxima. The data suggest that ribosomal proteins L7 and L26 contain SH groups that respond to ribosomal subunit association and become more reactive in the intact ribosome than in the subunit. The environments of some or all of the additionally labeled proteins are also sensitive to subunit reassociation.  相似文献   

20.
D J Goss  D J Rounds 《Biochemistry》1988,27(10):3610-3613
The rate constants for eucaryotic initiation factor 3 (eIF3) association and dissociation with 40S ribosomal subunits and 80S monosomes have been determined. These rate constants were determined by laser light scattering with unmodified eIF3. The affinity of eIF3 for 40S subunits is about 30-fold greater than for 80S ribosomes. This difference in affinity resides mainly in the association rate constants. Rate constants of 8.8 X 10(7) and 7.3 X 10(6) M-1 s-1 were obtained for eIF3 binding to 40S subunits and 80S ribosomes, respectively. From thermodynamic cycles, the affinity of eIF3-40S subunits for 60S subunits is about 30-fold lower than free 40S subunits for 60S subunits. A calculation shows that under these conditions and assuming simple equilibria, approximately 12% of ribosomal subunits would associate via a reaction of 40S-eIF3 with 60S subunits as opposed to a path where eIF3 dissociates from the 40S subunits prior to association with 60S subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号