首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmissive plasmid R64 (IncI1) performs an antirestriction function, reducing the efficiency of EcoKI-dependent restriction in Escherichia coli K12 cells approximately fivefold. The R64 ardA gene has been cloned and sequenced. The ArdA proteins specifically inhibit type I restriction–modification enzymes. R64 ArdA is highly homologous to ColIb-P9 ArdA: only 4 out of 166 amino acid residues differ. While ColIb-P9 inhibits both endonuclease and methylase activities of the type I restriction–modification enzyme EcoKI (R2M2S), R64 ArdA inhibits only its endonuclease activity. It has been assumed that R64 ArdA suppresses the binding of unmodified DNA with the R subunit, which is responsible for DNA translocation and cleavage. ColIb-P9 ArdA suppresses DNA binding not only with the R, but also with the S subunit, which contacts the sK site containing target adenines. The binding of ArdA with the specific site inhibits both endonuclease and methylase activities; the binding of ArdA with the nonspecific site of the R subunit inhibits only the endonuclease activity ofEcoKI (R2M2S).  相似文献   

2.
Proteins of the Ard family are specific inhibitors of type I restriction-modification enzymes. The ArdA of R64 is highly homologous to ColIb-P9 ArdA, differing only by four amino acid residues of the overall 166. However, unlike ColIb-P9 ArdA, which inhibits both the endonuclease and the methylase activities of EcoKI, the R64 ArdA protein inhibits only the endonuclease activity of this enzyme. The mutant forms of R64 ArdA--A29T, S43A, and Y75W, capable of partially reversing the protein to ColIb-P9 ArdA form--were produced by directed mutagenesis. It was demonstrated that only Y75W mutation of these three variants essentially influenced the functional activity of ArdA: the antimodification activity was restored to approximately 90-99%. It is assumed that R64 ArdA inhibits formation of the complex between unmodified DNA and the R subunit of the type I restriction-modification enzyme EcoKI (R2M2S), which translocates and cleaves DNA. ColIb-P9 ArdA protein is capable of forming the DNA complex not only with the R subunit, but also with the S subunit, which contacts sK site (containing modified adenine residues) in DNA. ArdA bound to the specific sK site inhibits concurrently the endonuclease and methylase activities of EcoKI (R2M2S), while ArdA bound to the nonspecific site in the R subunit blocks only its endonuclease activity.  相似文献   

3.
The transmissive plasmid IncI1 R64 contains the ardA gene encoding the ArdA antirestriction protein. The R64 ardA gene locating in the leading region of plasmid R64 has been cloned and their sequence has been determined. Antirestriction proteins belonging to the Ard family are specific inhibitors of type I restriction-modification enzymes. The IncI1 ColIb-P9 and R64 are closely related plasmids, and the latter specifies an ArdA homologue that is predicted to be 97.6% (162 residues from 166) identical at the amino acid sequence level with the ColIb = P9 equivalent. However, the R64 ArdA selectively inhibits the restriction activity of EcoKi enzyme leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The ColIb-P9 ArdA inhibits restriction endonuclease and methyltransferase activities simultaneously. It is hypothesized that the ArdA protein forms two complexes with the type I restriction-modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonuclease. The association of the ColIb-P9 ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of the R64 ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

4.
The ArdA and Ocr antirestriction proteins, whose genes are in transmissible plasmids (ardA) and bacteriophage genomes (0.3 (ocr)), specifically inhibit type I restriction-modification enzymes. The Ocr protein (T7 bacteriophage) was shown to inhibit both restriction (endonuclease) and modification (methylase) activities of the EcoKI enzyme in a broad range of intracellular concentrations (starting from 10–20 molecules per cell). In contrast to Ocr, the ArdA protein (ColIb-P9 transmissible plasmid) inhibited both of the EcoKI activities only at high intracellular concentrations (30000–40000 molecules per cell). When the ArdA concentration was several fold lower, only endonuclease activity of EcoKI was inhibited. It was assumed that a poorer ArdA ability to inhibit EcoKI modification activity is related to the substantial difference in life cycle between transmissible plasmids (symbiosis with the bacterial cell) and bacteriophages (infection and lysis of bacteria). The Ocr and ArdA mutants that inhibited exclusively endonuclease activity of EcoKI were obtained. Antirestriction proteins incapable of homodimerization were assumed to inhibit only endonuclease activity of type I restriction-modification enzymes.  相似文献   

5.
Genes encoding antirestriction proteins are found in transmissble plasmids (ardABC) and bacteriophage genomes (ocr, darA). Antirestriction proteins inhibit type I restriction-modification enzymes and thus protect the unmodified plasmid or phage DNA from degradation. Antirestriction proteins belong to the family of DNA-mimicry proteins, whose spatial structure mimics the B-form of DNA. Based on an analysis of the mutant forms of ArdA and Ocr obtained by site-directed mutagenesis and the native form of ArdA that specifically inhibit type I restriction enzymes but do not affect their methylase activity, a model is proposed to describe the complex formation between an antirestriction protein and a type I restriction-modification enzyme (R2M2S): antirestriction proteins can displace a DNA strand from its binding sites in the S subunit (which contacts a specific site on DNA) and in the R subunit (which translocates the DNA strand and cleaves it). Antirestriction and antimodification activities of ArdA and Ocr as a function of ardA and ocr expression levels were studied by cloning the genes under a strictly regulated promoter.  相似文献   

6.
A number of mutant forms of the antirestriction protein ArdA encoded by theardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction–modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the antirestriction motif with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction–modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

7.
A number of mutant forms of the antirestriction protein ArdA encoded by the ardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction--modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the "antirestriction motif" with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction--modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

8.
Antirestriction proteins ArdA and ArdB are specific inhibitors of type I restriction-modification enzymes. The ardA and yfeB (ardB) genes were cloned from the transmissible plasmid R64 in the pUC18 and pZE21 vectors. The R64 ArdA and ArdB proteins were shown to inhibit only restriction activity of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. In contrast to ArdA, ArdB inhibited EcoKI restriction activity only at a high intracellular concentration. Antirestriction activity of ArdB did not depend on the ClpXP protease. The yfeB (ardB) gene of the R64 plasmid is transcribed from a weak promoter located upstream of yfeA.  相似文献   

9.
Anti-restriction proteins ArdA and Ocr are specific inhibitors of type I restriction-modification enzymes. The IncI1 transmissible plasmid ColIb-P9 ardA and bacteriophage T7 0.3(ocr) genes were cloned in pUC18 vector. Both ArdA (ColIb-P9) and Ocr (T7) proteins inhibit both restriction and modification activities of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. ColIb-P9 ardA, T7 0.3(ocr), and the Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P(ltetO-1) promoter, which is tightly repressible by the TetR repressor. Controlling the expression of the lux-genes encoding bacterial luciferase demonstrates that the P(ltetO-1) promoter can be regulated over an up to 5000-fold range by supplying anhydrotetracycline to the E. coli MG1655Z1 tetR(+) cells. Effectiveness of the anti-restriction activity of the ArdA and Ocr proteins depended on the intracellular concentration. It is shown that the dissociation constants K(d) for ArdA and Ocr proteins with EcoKI enzyme differ 1700-fold: K(d) (Ocr) = 10(-10) M, K(d) (ArdA) = 1.7.10(-7) M.  相似文献   

10.
The EcoO109I restriction-modification system, which recognizes 5′-(A/G)GGNCC(C/T)-3′, has been cloned, and contains convergently transcribed endonuclease and methylase. The role and action mechanism of the gene product, C.EcoO109I, of a small open reading frame located upstream of ecoO109IR were investigated in vivo and in vitro. The results of deletion analysis suggested that C.EcoO109I acts as a positive regulator of ecoO109IR expression but has little effect on ecoO109IM expression. Assaying of promoter activity showed that the expression of ecoO109IC was regulated by its own gene product, C.EcoO109I. C.EcoO109I was overproduced as a His-tag fusion protein in recombinant Escherichia coli HB101 and purified to homogeneity. C.EcoO109I exists as a homodimer, and recognizes and binds to the DNA sequence 5′-CTAAG(N)5CTTAG-3′ upstream of the ecoO109IC translational start site. It was also shown that C.EcoO109I bent the target DNA by 54 ± 4°.  相似文献   

11.
12.
We have investigated the ATPase activity of the type IC restriction-modification (R – M) systemEcoR124II. As with all type I R – M systemsEcoR 124II requires ATP hydrolysis to cut DNA. We determined theKMfor ATP to be 10−5to 10−4M. By measuring ATP hydrolysis under different conditions and by simultaneously monitoring DNA restriction, methylation and ATP hydrolysis we propose that the order of events during restriction is: (1) binding ofEcoR124II to a non-methylated recognition sequence, (2) start of DNA-dependent ATP hydrolysis which continues even after restriction is complete, (3) restriction of DNA, (4) methylation of the product. Non-cleavable DNA substrates, such as recognition site containing oligonucleotides, also support ATP hydrolysis. Methylation can also occur prior to ATP hydrolysis and prevent DNA degradation.  相似文献   

13.
Type I restriction-modification (R-M) endonucleases are composed of three subunits—HsdR, required for restriction, and HsdM and HsdS which can produce a separate DNA methyltransferase. The HsdS subunit is required for DNA recognition. In this paper we describe the effect of clonedEcoKI andEcoR124Ihsd genes on the resulting R-M phenotype. The variability in the expression of the wild type (wt) restriction phenotype after cloning of the wthsd genes in a multicopy plasmid inEscherichia coli recA + background suggests that the increased production of the restriction endonuclease from pBR322 is detrimental to the cell and this leads to the deletion of the clonedhsd genes from the hybrid plasmid and/or inactivation of the enzyme. The effect of a mutation inE. coli recA gene on the expression of R-M phenotype is described and discussed in relation to the role of the cell surface and the localization of the restriction endonuclease in the cell.  相似文献   

14.
The T7 antirestriction protein Ocr, encoded by 0.3 (ocr), specifically inhibits ATP-dependent type I restriction-modification systems. T7 0.3 (ocr) was cloned in pUC18. Ocr inhibited both restriction and modification activities of the type I restriction-modification system (EcoKI) in Escherichia coli K12. The Ocr F53D A57E mutant was obtained and proved to inhibit only restriction activity of EcoKI. The 0.3 (ocr) and Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P ltetO-1 promoter, strongly controlled by the TetR repressor. The bioluminescence intensity and luciferase content varied up to 5000-fold in E. coli K12 MG1655Z1 tetR+ (pZE21-luxCDABE) cells, depending on the environmental concentration of the inductor anhydrotetracycline. The antirestriction activity of Ocr and Ocr F53D A57E was studied as a function of their concentration in the cell. The dissociation constant K d, characterizing the binding with EcoKI, differed 1000-fold between Ocr and Ocr F53D A57E (10?10 M versus 10?7 M).  相似文献   

15.
Molecular Biology - DNA mimicking ArdA anti-restriction proteins specifically inhibit restriction (endonuclease) activity of the type I restriction-modification (RM) system. An ArdA monomer is...  相似文献   

16.
The Eco57I restriction endonuclease and methylase were purified to homogeneity from the E.coli RR1 strain carrying the eco57IRM genes on a recombinant plasmid. The molecular weight of the denaturated methylase is 63 kDa. The restriction endonuclease exists in a monomeric form with an apparent molecular weight of 104-108 kDa. R.Eco57I also possesses methylase activity. The methylation activities of both enzymes modify the outer A residue in the target sequence 5'CTGAAG yielding N6-methyladenine. M.Eco57I modifies both strands of the substrate while R.Eco57I modifies only one. Only the methylase enzyme is stimulated by Ca2+. The restriction endonuclease shows an absolute requirement for Mg2+ and is stimulated by AdoMet. ATP has no influence on either activity of the enzymes. The subunit structure and enzymatic properties of the Eco57I enzymes distinguish them from all other restriction-modification enzymes that have been described previously. Therefore, RM.Eco57I may be regarded as a representative of a novel class of restriction-modification systems, and we propose to classify it as type IV.  相似文献   

17.
We have cloned the M and S genes of the restriction-modification (R-M) system AhdI and have purified the resulting methyltransferase to homogeneity. M.AhdI is found to form a 170 kDa tetrameric enzyme having a subunit stoichiometry M2S2 (where the M and S subunits are responsible for methylation and DNA sequence specificity, respectively). Sedimentation equilibrium experiments show that the tetrameric enzyme dissociates to form a heterodimer at low concentration, with Kd ≈ 2 µM. The intact (tetrameric) enzyme binds specifically to a 30 bp DNA duplex containing the AhdI recognition sequence GACN5GTC with high affinity (Kd ≈ 50 nM), but at low enzyme concentration the DNA binding activity is governed by the dissociation of the tetramer into dimers, leading to a sigmoidal DNA binding curve. In contrast, only non-specific binding is observed if the duplex lacks the recognition sequence. Methylation activity of the purified enzyme was assessed by its ability to prevent restriction by the cognate endonuclease. The subunit structure of the M.AhdI methyltransferase resembles that of type I MTases, in contrast to the R.AhdI endonuclease which is typical of type II systems. AhdI appears to be a novel R-M system with properties intermediate between simple type II systems and more complex type I systems, and may represent an intermediate in the evolution of R-M systems.  相似文献   

18.
The geneshsdM andhsdS for M.EcoKI modification methyltrasferase and the complete set ofhsdR,hsdM andhsdS genes coding for R.EcoKI restriction endonuclease, both with and without a temperature-sensitive (ts) mutation inhsdS gene, were cloned in pBR322 plasmid and introduced intoE. coli C (a strain without a natural restriction-modification (R-M) system). The strains producing only the methyltransferase, or together with the endonuclease, were thus obtained. ThehsdS ts-1 mutation, mapped previously in the distal variable region of thehsdS gene with C1 245-T transition has no effect on the R-M phenotype expressed from cloned genes in bacteria grown at 42°C. In clones transformed with the wholehsd region an alleviation of R-M functions was observed immediately after the transformation, but after subculture the transformants expressed the wild-type R-M phenotype irrespective of whether the wild-type or the mutanthsdS allele was present in the hybrid plasmid. Simultaneous overproduction of HsdS and HsdM subunits impairs the ts effect of thehsdS ts-1 mutation on restriction and modification.  相似文献   

19.
A 203 base-pair fragment containing the lac operator/promoter region of Escherichia coli was inserted into the EcoRI site of the plasmid vector pKC7. Rates of restriction endonuclease cleavage of the flanking EcoRI sites and of several other restriction sites on the DNA molecule were then compared in the presence and absence of bound RNA polymerase or lac repressor. The rates were identical whether or not protein had been bound, even for sites as close as 40 base-pairs from a protein binding site. No difference was detected using supercoiled, nicked circular, or linear DNA substrates. No apparent change in the rates of methylation of EcoRI sites by EcoRI methylase was produced by binding the regulatory proteins.  相似文献   

20.
The HsdS subunit of a type I restriction-modification (R-M) system plays an essential role in the activity of both the modification methylase and the restriction endonuclease. This subunit is responsible for DNA binding, but also contains conserved amino acid sequences responsible for protein-protein interactions. The most important protein-protein interactions are those between the HsdS subunit and the HsdM (methylation) subunit that result in assembly of an independent methylase (MTase) of stoichiometry M(2)S(1). Here, we analysed the impact on the restriction and modification activities of the change Trp(212)-->Arg in the distal border of the central conserved region of the EcoR124I HsdS subunit. We demonstrate that this point mutation significantly influences the ability of the mutant HsdS subunit to assemble with the HsdM subunit to produce a functional MTase. As a consequence of this, the mutant MTase has drastically reduced DNA binding, which is restored only when the HsdR (restriction) subunit binds with the MTase. Therefore, HsdR acts as a chaperon allowing not only binding of the enzyme to DNA, but also restoring the methylation activity and, at sufficiently high concentrations in vitro of HsdR, restoring restriction activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号