首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
We examine in vitro nucleosome assembly by nucleosome assembly protein-1 (NAP-1) and ATP-utilizing chromatin assembly and remodeling factor (ACF). In contrast to previous studies that used relaxed, circular plasmids as templates, we have found that negatively supercoiled templates reveal the distinct roles of NAP-1 and ACF in histone deposition and the formation of an ordered nucleosomal array. NAP-1 can efficiently deposit histones onto supercoiled plasmids. Furthermore, NAP-1 exhibits a greater affinity for histones H2A-H2B than does naked DNA, but in the presence of H3-H4, H2A-H2B are transferred from NAP-1 to the plasmid templates. These observations underscore the importance of a high affinity between H2A-H2B and NAP-1 for ordered transfer of core histones onto DNA. In addition, recombinant ACF composed of imitation switch and Acf1 can extend closely packed nucleosomes, which suggests that recombinant ACF can mobilize nucleosomes. In the assembly reaction with a supercoiled template, ACF need not be added simultaneously with NAP-1. Regularly spaced nucleosomes are generated even when recombinant ACF is added after core histones are transferred completely onto the DNA. Atomic force microscopy, however, suggests that NAP-1 alone fails to accomplish the formation of fine nucleosomal core particles, which are only formed in the presence of ACF. These results suggest a model for the ordered deposition of histones and the arrangement of nucleosomes during chromatin assembly in vivo.  相似文献   

3.
4.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

5.
Analysis of the binding of C-reactive protein to chromatin subunits   总被引:17,自引:0,他引:17  
C-reactive protein (CRP) is an acute phase serum protein in man. The functional activities of CRP, like Ig, include complement activation and enhancement of phagocytosis. CRP binding to several substrates, including phosphocholine, individual denatured histones, and chromatin, has been demonstrated. We previously demonstrated that CRP binding to chromatin is dependent on the presence of histone H1, despite the fact that CRP binds to purified individual histones H2A and H2B, as well as to H1. In this report we examined the binding of CRP to native sub-nucleosomal chromatin fragments. CRP binding to the H2A-H2B dimer and (H3-H4)2 tetramer was demonstrated and these reactions were inhibited by phosphocholine. However, no binding to the subnucleosome complexes (H2A-H2B)-DNA and (H3-H4)2-DNA was seen. Similarly, CRP binding to H1 was eliminated when H1 was reconstituted with DNA. The reconstitution of H1-depleted chromatin with H1 restored CRP binding. CRP binding to nucleosome core particles, as previously demonstrated by others, was confirmed. Therefore, the interaction of CRP with individual core histones does not appear to be responsible for the binding of CRP to native chromatin. However, binding to core particles could be mediated by differentially exposed determinants on H2A and H2B.  相似文献   

6.
A Zweidler 《Biochemistry》1992,31(38):9205-9211
We have determined the accessibility of histone tyrosine residues to react with p-nitrobenzenesulfonyl fluoride (NBSF) in intact nuclei, salt-dissociated nucleosomes, isolated histone complexes, and individual core histones. Of the 15 core histone tyrosine residues, 13 are inaccessible in native nucleosomes; only Tyr121 near the C-terminus of H2B is fully accessible, and Tyr54 of H3 is partially accessible under near-physiological conditions. When H1 and the basic N-terminal tails of the core histones are dissociated from the DNA by treating nuclei with 0.4 and 0.8 M NaCl, the two tyrosines which are adjacent to the basic regions of H2B and H3 become accessible as well. This indicates that these tyrosine residues may be involved in histone-DNA interactions, either directly or indirectly. When the H2A-H2B dimers are dissociated from the chromatin by raising the NaCl concentration to 1.2 M, three to four tyrosines located in the structured regions of H2B and H4 are exposed, suggesting that these tyrosine residues may be located at the dimer-tetramer interface. Dissociating all the histones from the DNA at an even higher ionic strength as a mixture of dimers, tetramers, and octamers does not change the pattern of Tyr exposure, but reduces the reactivity of the tyrosines at the dimer-tetramer interface as would be expected from the reassociation of H2A-H2B dimers and H3-H4 tetramers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The accessibility to trypsin of "core" histones within the dimer (H2A-H2B), tetramer (H3-H4)2, octamer (H2A-H2B-H3-H4)2 and in chromatin was studied. It was shown that the hydrolysis of histones H2A and H2B within the dimer and octamer occurs in essentially the same way. The tetramer (H2-H4)2 becomes more compact with an increase in the ionic strength. Some of the tetramer (H3-H4)2 sites within the octamer are protected against trypsin. It was demonstrated that in terms of the histone accessibility to trypsin chromatin can exist in three states, i.e., tightly packed (in the presence of histone H1 and bivalent cations), intermediate (in the absence of histone H1 or bivalent cations) and folded (in the absence of histone H1 and bivalent cations). The folding of histones in neither of these chromatin states coincides with that within the octamer in 2M NaCl.  相似文献   

8.
9.
Conn KL  Hendzel MJ  Schang LM 《Journal of virology》2011,85(24):13234-13252
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.  相似文献   

10.
The secondary structure of histones H2B and H3 from calf thymus has been quantitatively studied in heavy water solutions in a wide range of histone concentrations, pD, and concentrations of sodium chloride by an infrared spectroscopy method. Also, the interactions between molecules of different histones in equimolar mixtures H2A-H2B, H2A-H3, H2A-H4, H2B-H3, H2B-H4, H3-H4, and H2A-H2B-H3-H4 have been investigated using the same method. For H2B and H3 conditions favourable for aggregation have been shown to induce the formation of pleated sheet structure. When the pD and concentration of NaCl are in a physiological range, the secondary structure of H2B and H3 contains about 15% of alpha-helix, 4% of parallel pleated sheet structure, 14% of antipatallel pleated sheet structure in H2B and 18% in H3. For mixtures in all cases, except H2A-H4, there is an interaction between molecules of different histones followed by a reduction of the antiparallel pleated sheet structure content. The data on the secondary structure of histones in different states (under self-association, in mixtures, in nucleosomes, and in chromatin) have been discussed and it is suggested that: 1) the secondary structure of histones in chromatin is essentially similar to that in the state of self-association; 2) in the core nucleosome particle the quantity of DNA (in nucleotide pairs), and the quantities of alpha-helix and antiparallel pleated sheet structure (in peptide groups) satisfy the relation 1 : 1 : 1.  相似文献   

11.
Mizuguchi G  Xiao H  Wisniewski J  Smith MM  Wu C 《Cell》2007,129(6):1153-1164
The budding yeast histone H3 variant, Cse4, replaces conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs assembly of the kinetochore, a multiprotein complex mediating chromosome segregation. We have identified Scm3, a nonhistone protein that colocalizes with Cse4 and is required for its centromeric association. Bacterially expressed Scm3 binds directly to and reconstitutes a stoichiometric complex with Cse4 and histone H4 but not with conventional histone H3 and H4. A conserved acidic domain of Scm3 is responsible for directing the Cse4-specific interaction. Strikingly, binding of Scm3 can replace histones H2A-H2B from preassembled Cse4-containing histone octamers. This incompatibility between Scm3 and histones H2A-H2B is correlated with diminished in vivo occupancy of histone H2B, H2A, and H2AZ at centromeres. Our findings indicate that nonhistone Scm3 serves to assemble and maintain Cse4-H4 at centromeres and may replace histone H2A-H2B dimers in a centromere-specific nucleosome core.  相似文献   

12.
In eukaryotic nuclei, DNA is wrapped around a protein octamer composed of the core histones H2A, H2B, H3, and H4, forming nucleosomes as the fundamental units of chromatin. The modification and deposition of specific histone variants play key roles in chromatin function. In this study, we established an in vitro system based on permeabilized cells that allows the assembly and exchange of histones in situ. H2A and H2B, each tagged with green fluorescent protein (GFP), are incorporated into euchromatin by exchange independently of DNA replication, and H3.1-GFP is assembled into replicated chromatin, as found in living cells. By purifying the cellular factors that assist in the incorporation of H2A-H2B, we identified protein phosphatase (PP) 2C gamma subtype (PP2Cgamma/PPM1G) as a histone chaperone that binds to and dephosphorylates H2A-H2B. The disruption of PP2Cgamma in chicken DT40 cells increased the sensitivity to caffeine, a reagent that disturbs DNA replication and damage checkpoints, suggesting the involvement of PP2Cgamma-mediated histone dephosphorylation and exchange in damage response or checkpoint recovery in higher eukaryotes.  相似文献   

13.
Micrococcal-nuclease digestion of rat liver nuclei selectively released mononucleosomes associated with ADP-ribosylated [Caplan, Ord & Stocken (1978) Biochem. J.174, 475-483] histone H1. Two classes of mononucleosome were detected, those that leaked out during digestion and those that were subsequently released by 5mm-sodium phosphate buffer (pH6.8)/0.2mm-NaEDTA. The former, from which histone H1 had been dissociated, contained 140-base-pair-length DNA and core histones;the latter contained core particles and mononucleosomes with histone H1 and 200-base-pair-length DNA. When normal liver nuclei were phosphorylated with [gamma-(32)P]ATP, dissociated histone H1, which could be separated from core particles with Sephadex G-200, showed (32)P uptake. (32)P uptake into histones H2A and poly(ADP-ribosyl)ated H3 was appreciable in core particles, but was less evident in nucleosomes still containing histone H1. When [(3)H]-thymidine was given to partially hepatectomized rats in S-phase, 5-10min pulses in animals of over 300g body wt. showed the presence of high-specific-radioactivity DNA in released core particles and mononucleosomes compared with DNA retained in the nuclear pellets. Mononucleosomes from rat livers in S-phase with new, [(3)H]lysine-containing histones, had higher (32)P incorporation in histones H1 and their core histones, than for di- or tri-nucleosomes. Thermal-denaturation properties of control and phosphorylated mononucleosomes and core particles were very similar; removal of histone H1 and non-histone chromosomal proteins in 0.5m-NaCl markedly increased the proportion of DNA ;melting' below 70 degrees C.  相似文献   

14.
We have studied the sample concentration-dependent and external stress-dependent stability of native and reconstituted nucleosomal arrays. Whereas upon stretching a single chromatin fiber in a solution of very low chromatin concentration the statistical distribution of DNA length released upon nucleosome unfolding shows only one population centered around approximately 25 nm, in nucleosome stabilizing conditions a second population with average length of approximately 50 nm was observed. Using radioactively labeled histone H3 and H2B, we demonstrate that upon lowering the chromatin concentration to very low values, first the linker histones are released, followed by the H2A-H2B dimer, whereas the H3-H4 tetramer remains stably attached to DNA even at the lowest concentration studied. The nucleosomal arrays reconstituted on a 5 S rDNA tandem repeat exhibited similar behavior. This suggests that the 25-nm disruption length is a consequence of the histone H2A-H2B dimer dissociation from the histone octamer. In nucleosome stabilizing conditions, a full approximately 145 bp is constrained in the nucleosome. Our data demonstrate that the nucleosome stability and histone octamer integrity can be severely degraded in experiments where the sample concentration is low.  相似文献   

15.
曾庆华  吕延成 《遗传学报》1999,26(4):329-335
采用从鸡红细胞中分离纯化的组蛋白H1,核心组蛋白H2A+H2B和H3+H4,以及从HeLa细胞中萃取的含有RNA聚合酶Ⅱ和多种Ⅱ类基因转录因子的可溶性HeLa细胞核抽提物,通过凝胶迟滞电泳,对组蛋白和HeLa细胞核抽提物中的转录因子在人自泌移动因子受体(Humanautocrinemotilityfactor,简称hAMFR)基因上游启动子序列的相互作用关系进行了初步研究,得到以下结论,组蛋白H1  相似文献   

16.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

17.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

18.
19.
We present a detailed picture of the disposition of core and H1 histone genes in the chicken genome. Forty-two genes were located within four nonoverlapping regions totalling approximately 175 kilobases and covered by three cosmid clones and a number of lambda clones. The genes for the tissue-specific H5 histone and other variant histones were not found in these regions. The longest continuous region mapped was 67 kilobases and contained 21 histone genes in five dissimilar clusters. No long-range repeat was evident, but there were preferred associations, such as H1 genes with paired, divergently transcribed H2A-H2B genes and H3-H4 associations. However, there were exceptions, and even when associations such as H1-H2A-H2B we maintained, the order of those genes within a cluster may not have been. Another feature was the presence of three (unrelated) clusters in which genes were symmetrically ordered around central H3 genes; in one such cluster, the boundaries of a duplicated H2A-H4 gene pair contained related repeat sequences. Despite the dispersed nature of chicken histone genes, the number of each type was approximately equal, being represented as follows: 6 H1, 10 H2A, 8 H2B, 10 H3, and 8 H4.  相似文献   

20.
Using immobilized trypsin and an appropriate fractionation procedure, we have been able to prepare, for the first time, nucleosome core particles containing selectively trypsinized histone domains. The particles thus obtained: [(H3T-H4T)2-2(H2AT-H2BT)].DNA; [(H3-H4)2-2(H2AT-H2BT)].DNA; [H3T-H4T)2-2(H2A-H2B)].DNA (where T means trypsinized), together with the non-trypsinized controls have been characterized using the following techniques: analytical ultracentrifugation, circular dichroism, thermal denaturation and DNAse I digestion. The major aim of this study was to analyze the role of the amino-terminal regions (the histone "tails") on the stability of the nucleosome in solution. The data obtained from this analysis clearly show that stability of the nucleosome core particle to dissociation (below a salt concentration of 0.7 M-NaCl) is not affected by the presence or the absence of any of the N-terminal regions of the histones. Furthermore, these histone regions make very little contribution, if any, to the conformational transition that nucleosomes undergo in this range of salt concentrations. They play, however, a very important role in determining the thermal stability of the particle, as reflected in the dramatic alterations exhibited by the melting profiles upon selective removal of these tails by trypsinization. The melting data can be explained by a simple hypothesis that ascribes interaction of H2A/H2B and H3/H4 tails to particular regions of the nucleosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号