首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Modulation of NF-kappaB activity by exchange of dimers   总被引:1,自引:0,他引:1  
Saccani S  Pantano S  Natoli G 《Molecular cell》2003,11(6):1563-1574
  相似文献   

8.
9.
10.
11.
RelB, an NF-kappaB/Rel-related transacting factor, was initially identified as an immediate-early gene product in fibroblasts and subsequently shown to exhibit constitutive DNA binding activity in lymphoid cells. The data presented in this report show that RelB is also constitutively active, as monitored by electrophoretic mobility shift assay, in the v-Src-transformed fibroblast cell line, SR1. By contrast, nontransformed parental (3Y1) cells displayed inducible NF-kappaB activity; RelB activity was also observed, although to a lesser extent, in two additional v-Src-transformed fibroblast lines. RelB activation in SR1 cells did not require an increase in RelB expression or result from a decrease in the levels of IkappaB alpha or p105, proteins previously shown to bind to and inhibit the activity of the Rel proteins. Numerous studies have shown that stimulus-dependent Rel activation requires degradation of IkappaB alpha, p105 or other member of the IkappaB family, and that this process is precluded by agents that inhibit proteasome activity. We show that treatment of SR1 cells with proteasome inhibitors abolishes RelB activity and thus suggest that RelB in these cells is associated with IkappaB and that v-Src transformation activates RelB by accelerating IkappaB proteolysis. Additional data show that serum and tumor necrosis factor-alpha (TNF-alpha) increase RelB protein levels in 3Y1 cells and that this process is blocked by proteasome inhibitors.  相似文献   

12.
13.
14.
15.
Members of the nuclear factor-κB (NF-κB)/Rel family (p50, p52, p65 (RelA), RelB and c-Rel) is sequestered in the cytoplasm through its tight association with the inhibitor of NF-κB (IκB). NF-κB has been shown to function as key regulators of either cell death or survival in neurons after activation of the cells by various extracellular signals. In the study presented here, we investigated whether the selective activation of diverse NF-κB/Rel family members in HT22 cells might lead to distinct effects on glutamate-induced cell death. Exposing HT22 cells to glutamate, which blocks cystine uptake into the cells via inhibition of the glutamate-cystine antiporter, resulted in a transient activation of IκB and NF-κB/Rel and caused delayed cell death. Aspirin, which has been shown to block phosphorylation of the IκB component of the cytoplasmic NF-κB complex, significantly suppressed glutamate-induced cell death, whereas the NF-κB decoy oligonucleotide potentiated it. The inhibition of NF-κB/Rel protein expression by antisense oligonucleotides showed that p65 is involved in glutamate-mediated cell death, whereas p50 is involved in inhibitory pathways of the cell death. These findings suggest that in HT22 cells, the balance between promoting and presenting cell death to glutamate-induced oxidative stress relies on the activation of distinct NF-κB proteins.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号