首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Unidirectional fluxes of35SO4 across and into rabbit ileal epithelium were measured under short-circuit conditions, mostly at a medium SO4 concentration of 2.4mm. Unidirectional mucosa (m)-to-serosa (s) ands-to-m fluxes (J ms,J sm) were 0.456 and 0.067 moles hr–1 cm–2, respectively.J ms was 2.7 times higher in distal ileum than in mid-jejunum. Ouabain abolished net SO4 transport (J net) by reducingJ ms. Epinephrine, a stimulus of Cl absorption, had no effect on SO4 fluxes. Theophylline, a stimulus of Cl secretion, reducedJ ms without affectingJ sm, causing a 33% reduction inJ net. Other secretory stimuli (8-Br-cAMP, heat-stable enterotoxin, Ca-ionophore A23187) had similar effects. Replacement of all Cl with gluconate markedly reducedJ net through both a decrease inJ ms and an increase inJ sm. The anion-exchange inhibitor, 4-acetoamido-4-isothiocyano-2,2-sulfonic acid stilbene (SITS), when added to the serosal side, reducedJ ms by 94%, nearly abolishingJ net. SITS also decreasedJ sm by 75%. Mucosal SITS (50 m) was ineffective. 4,4-diisothiocyano-2,2-sulfonic acid stilbene (DIDS) had effects similar to SITS but was less potent. Measurements of initial rates of epithelial uptake from the luminal side (J me) revealed the following: (1)J me is a saturable function of medium concentration with aV max of 0.94 moles hr–1 cm–2 and aK 1/2 of 1.3mm; (2) replacing all Na with choline abolishedJ me; (3) replacing all Cl with gluconate increasedJ me by 40%; (4) serosal SITS had no effect onJ me; and (5) stimuli of Cl secretion had no effect onJ me or increased it slightly. Determination of cell SO4 with35SO4 indicated that, at steady-state, the average mucosal concentration is 1.1 mmoles per liter cell water, less than half the medium concentration. Cell SO4 was increased to 3.0mm by adding SITS to the serosal side. Despite net transport rates greater than 1.4 Eq hr–1 cm–2, neither addition of SO4 to the SO4-free medium nor addition of SITS to SO4-containing medium altered short-circuit current. The results suggest that (1) ileal SO4 absorption consists of Na-coupled influx (symport) across the brush border and Cl-coupled efflux (antiport) across the basolateral membrane; (2) the overall process is electrically neutral; (3) the medium-to-cell Cl concentration difference may provide part of the driving force for net SO4 absorption; and (4) since agents affecting Cl fluxes (both absorptive and secretory) have little effect on SO4 fluxes, the mechanisms for their transcellular transports are under separate regulation.  相似文献   

2.
Relationships between short-circuit current (I sc), cell Cl and the mechanism(s) of Cl accumulation in toad bladder epithelial cells were investigated. In serosal Cl-free gluconate Ringer, 80% of the cell Cl (measured by x-ray microanalysis) was lost over 30–60 min with an associated decrease in cell water content. Concomitantly, I sc fell to 20% of its initial value within 10 min but then recovered to 45% of its initial value despite continued Cl loss. With the reintroduction of Cl, cell Cl and I sc both recovered within 10 min. Serosal SITS (4 acetamido-4-isothiocyano-stilbene-2,2-disulfonate; 0.5 mm) plus bumetanide (0.1 mm), did not prevent the fall in I sc or the loss of cell Cl in gluconate medium, although they did inhibit subsequent recovery of I sc in this medium. They also prevented the recovery of I sc in Cl medium but not the reaccumulation of Cl by the cells. Although SITS and bumetanide did not prevent the loss or recovery of Cl, they modified the pattern of the ion changes. In their absence, changes in cellular Cl were twice that of the changes in measured cellular cations implicating basolateral Cl/HCO3 exchange in Cl movement. With SITS plus bumetanide present, changes of similar magnitude in Cl were associated with equivalent changes in cation, consistent with the inhibition of Cl/ HCO3 exchange.This work was supported by a grant from the Medical Research Council of New Zealand. Purchase of equipment was made possible through grants from the Medical Research Council of New Zealand, the Medical Distribution Committee of the Lottery Board, the University Grants Committee, the Telford Trust, the New Zealand Neurological Foundation and the National Heart Foundation. The expert technical assistance of S. Zellhuber-McMillan is gratefully acknowledged.  相似文献   

3.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

4.
Summary In previous studies we have found that several anions can be transported by an exchange process in rabbit ileal brush border membranes. We demonstrated exchanges of Cl for OH or HCO3, SO4 for OH, oxalate for OH, and oxalate for Cl. The purpose of these studies was to determine the number of distinct carriers mediating these exchanges. We utilized substrate and inhibitor specificity studies to distinguish between different anion exchange transporters. We conclude that SO4OH and oxalate: OH exchange occur on the same carrier because: (i) pH-gradient stimulated transport of both14C-oxalate and35SO4 were equally sensitive tocis-inhibition by unlabeled SO4 or oxalate; and (ii) both were inhibited equally by K. We conclude that oxalate: OH and oxalate: Cl exchanges occur on different carriers because: (i) Cl or SO4 caused unequalcis-inhibition of these two exchanges; and (ii) as compared to oxalate: Cl exchange, oxalate: OH exchange was more sensitive to inhibition by probenecid and K and less sensitive to inhibition by bumetanide. Finally, we conclude that oxalate: Cl exchange and ClHCO3 exchange occur on different carriers because: (i) ClHCO3 exchange was almost completely insensitive tocis-inhibition by oxalate; and (ii) oxalate: Cl exchange was more sensitive to inhibition by DIDS and bumetanide than ClHCO3 exchange. Thus we have found that there are at least three separate anion exchangers on rabbit ileal brush border: (i) a ClHCO3 exchanger; (ii) a SO4OH exchanger, which also transports oxalate; and (iii) an oxalate: Cl exchanger.  相似文献   

5.
Summary Bicarbonate is transferred across the serosal (S) membrane of the epithelial cells of the turtle bladder in two directions. Cellular HCO 3 generated behind the H+ pump moves across this membrane into the serosal solution. This efflux of HCO 3 is inhibited by SITS (4-isothiocyano-4-acetamido-2,2-disulfonic stilbene). When HCO 3 is added to the serosal solution it is transported across the epithelium in exchange for absorbed Cl. This secretory HCO 3 flow traverses the serosal cell membrane in the opposite direction. In this study the effects of serosal addition of 5×10–4 m SITS on HCO 3 secretion and Cl absorption were examined. The rate of H+ secretion was brought to zero by an opposing pH gradient, and 20mm HCO 3 was added toS. HCO 3 secretion, measured by pH stat titration, was equivalent to the increase inMS Cl flux after HCO 3 addition. Neither theSM flux of HCO 3 nor theMS flux of Cl were affected by SITS. In the absence of electrochemical gradients, net Cl absorption was observed only in the presence of HCO 3 in the media; under such conditions, unidirectional and net fluxes of Cl were not altered by serosal or mucosal SITS. H+ secretion, however, measured simultaneously as the short-circuit current in ouabain-treated bladders decreased markedly after serosal SITS. The inhibition of the efflux of HCO 3 in series with the H+ pump and the failure of SITS to affect HCO 3 secretion and Cl absorption suggest that the epithelium contains at least two types of transport systems for bicarbonate in the serosal membrane.  相似文献   

6.
Summary In intact ileal mucosa, uptake of SO4 across the brush border membrane requires the presence of Na and is saturable, withK1/2=1.3mm at 140mm Na (P.L. Smith, S.A. Orellana & M. Field, 1981.J. Membrane Biol. 63:199–206). The present study examines the substrate specificities and transport stoichiometry of the Na-dependent SO4 uptake process. The effects of variations in medium anion and cation composition on lumen-to-epithelium influx of SO4 (J me SO4 ) were determined under short-circuit conditions.J me SO4 is inhibited by thiosulfate, but not by phosphate, methylsulfate, vanadate or taurocholate. Cl is weakly inhibitory. Uptake of SO4 is poorly supported by Li, and is unaffected by K, indicating a specific dependence on Na. At low SO4 concentration (0.22mm),J me SO4 is a hyperbolic function of medium Na concentration; the corresponding Hill plot is linear with a slope of 1.0, suggesting a transport stoichiometry of 1 Na: 1 SO4. At high SO4 concentration (6.7mm), the Na-dependent SO4 velocity curve is sigmoidal and yields a Hill plot which is again linear but has a slope of 1.56, suggesting transport of more than 1 Na per SO4. SO4 uptake in presence of Na exhibits a dependence on medium pH. At 0.22mm SO4 and 140mm Na,J me SO4 was doubled by lowering pH from 7.4 to 6.8. However, at 6.7mm SO4 and 140mm Na, changing pH had no effect onJ me SO4 over the range 6.8 to 8.5. The pH dependence ofJ me SO4 at 6.7mm SO4 was restored when medium Na was lowered to 3mm, suggesting that pH sensitivity is a function of the concentration of preformed NaSO 4 ion pair. The results suggest that SO4 influx across the ileal brush border occurs by electroneutral Na+/NaSO 4 or Na+/H+/SO 4 2– cotransport, the former being favored by high concentrations of Na and SO4.  相似文献   

7.
Summary The fluorescence enhancement of 4,4-dibenzamido-2,2-disulfonic stilbene (DBDS) upon binding to membranes was used to examine proximal tubule stilbene binding sites. Equilibrium binding studies of DBDS to renal brush border (BBMV) and basolateral membrane vesicles (BLMV) were performed using a fluorescence enhancement technique developed for red blood cells (A.S. Verkman, J.A. Dix and A.K. Solomon,J. Gen. Physiol. 81:421–449, 1983). In the absence of transportable anions, DBDS bound reversibly to a single class of sites on BLMV isolated from rabbit (K d =3.8 m) and rat (3.2 m); 100 m dihydro-4,4-diisothiocyano-2,2-disulfonic stilbene (H2DIDS) blocked >95% of binding. H2DIDS inhibitable DBDS binding was not detected using rat or rabbit BBMV. In rabbit BLMV, DBDSK d doubled with 10mm SO4, 50mm HCO3 and 100mm Cl, but was not altered by Na or pH (6–8). In stopped-flow experiments the exponential time constant for DBDS binding slowed with SO4, HCO3 and Cl, but was unaffected by Na. These results are consistent with competitive binding of DBDS and anions at an anion transport site. To relate DBDS binding data to anion transport inhibition we used35SO4 uptake to characterize several modes of rabbit BLM anion transport: H/SO4 and Na/SO4 cotransport, and Cl/SO4 countertransport. Each transport process was electroneutral and was inhibited by H2DIDS, furosemide, probenecid, chlorothiazide and DBDS. The apparentK t 's for DBDS (3–20 m) were similar toK d for DBDS binding. These studies define a class of anion transport sites on the proximal tubule basolateral membrane measureable optically by a fluorescent stilbene.  相似文献   

8.
Summary The effect of changes in Cl concentration in the external and/or serosal bath on Cl transport across short-circuited frog skin was studied by measurements of transepithelial Cl influx (J 13 Cl ) and efflux (J 31 Cl ), short-circuit current, transepithelial potential, and conductance (G m).J 13 Cl as well asJ 31 Cl were found to have a saturating component and a component which is apparently linear with Cl concentration. The linear component ofJ 31 Cl appears only upon addition of Cl to external medium, and about 3/4 of this component does not contribute toG m. The saturating component ofJ 31 Cl is only 5% of totalJ 31 Cl with 115mm Cl in the serosal medium. Replacement of 115mm Cl in external medium by SO 4 = , NO 3 , HCO 3 or I results in 87–97% reduction ofJ 31 Cl , whereas replacement with Br has no effect. As external Cl concentration is raised in steps from 2 to 115mm,J 13 Cl andJ 31 Cl increase by the same amount butJ 13 Cl is persistently 0.15 eq/cm2 hr larger thanJ 31 Cl . These results indicate that at least 3/4 of linear components ofJ 13 Cl andJ 31 Cl proceed via an exchange diffusion mechanism which seems to be located at the outer cell border. The saturating component ofJ 13 Cl is involved in active Cl transport in an inward direction, and there is evidence suggesting that Cl uptake across outer cell border, which proceeds against an electrochemical gradient, is electroneutral but not directly linked to Na.Reprinted from The Journal of Membrane Biology, Vol. 54, No. 3, pages 191–202. Our apologies for deleting the author's names on the original version.  相似文献   

9.
Summary The effect of changes in Cl concentration in the external and/or serosal bath on Cl transport across short-circuited frog skin was studied by measurements of transepithelial Cl influx (J 13 Cl ) and efflux (J 31 Cl ), short-circuit current, transepithelial potential, and conductance (G m).J 13 Cl as well asJ 31 Cl were found to have a saturating component and a component which is apparently linear with Cl concentration. The linear component ofJ 31 Cl appears only upon addition of Cl to external medium, and about 3/4 of this component does not contribute toG m. The saturating component ofJ 31 Cl is only 5% of totalJ 31 Cl with 115mm Cl in the serosal medium. Replacement of 115mm Cl in external medium by SO 4 = , NO 3 , HCO 3 or I results in 87–97% reduction ofJ 31 Cl , whereas replacement with Br has no effect. As external Cl concentration is raised in steps from 2 to 115mm,J 13 Cl andJ 31 Cl increase by the same amount butJ 13 Cl is persistently 0.15 eq/cm2 hr larger thanJ 31 Cl . These results indicate that at least 3/4 of linear components ofJ 13 Cl andJ 31 Cl proceed via an exchange diffusion mechanism which seems to be located at the outer cell border. The saturating component ofJ 13 Cl is involved in active Cl transport in an inward direction, and there is evidence suggesting that Cl uptake across outer cell border, which proceeds against an electrochemical gradient, is electroneutral but not directly linked to Na.  相似文献   

10.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

11.
Summary Self-exchange of chloride and sulfate in dog and cat red cells has been measured under equilibrium conditions. The rates of efflux for these anions are approximately twofold higher in dog compared to cat red blood cells. Although the rates differ, the anion exchange systems of these two red cell types exhibit many common properties. The dependence of35SO4 efflux on the intracellular SO4 concentration, the pH dependence and the inhibition of35SO4 efflux by Cl and SITS are almost identical in dog and cat red cells. Nystatin treatment was used to study the dependence of36Cl efflux on internal Cl. Chloride efflux exhibits saturation in both cell types with dog red cells possessing a higherV max andK 1/2 than cat red cells. The number of anion transport sites was estimated by extrapolation to the number of molecules of dihydro DIDS (H2DIDS, where DIDS is 4,4-diisothiocyano-2,2 stilbene-disulfonic acid) which were bound at 100% inhibition of transport. The results indicate that either the turnover numbers for anion transport differ in dog, cat, and human red cells or that there is heterogeneity in the function of the membrane components which bind H2DIDS.  相似文献   

12.
The cellular model of short chain fatty acid stimulation of electroneutral Na-Cl absorption in large intestine proposes that SCFA, following its uptake across the apical membrane, recycles and is coupled to functional Na-H and Cl-short chain fatty acid exchanges. To establish the presence of a Cl-butyrate exchange (used as a model short chain fatty acid), studies of 36Cl and 14C-butyrate uptake across apical membrane vesicles of rat distal colon were performed. An outward butyrate-gradient stimulated transient accumulation of 36Cl uptake that was not inhibited by pH clamping with valinomycin (a K ionophore) and FCCP (a proton ionophore). Outward butyrate-gradient-stimulated 36Cl uptake was inhibited by 4,4-diisothiocyanatostilbene2,2-disulfonic acid (DIDS) with a half-maximal inhibitory concentration (IC50) of 68.4 m, and was saturated by both increasing extravesicular Cl concentration (K m for Cl of 26.8 ±3.4 mm and a V max of 12.4±0.6 nmol/mg protein·9 sec) and increasing intravesicular butyrate concentration (K m for butyrate of 5.9 mm and a V max for Cl of 5.9 nmol/mg protein · 9 sec). 36Cl uptake was also stimulated by outward gradients of other short chain fatty acids (e.g., propionate, acetate and formate). In contrast, an outward Cl gradient failed to enhance 14C-butyrate uptake. Extravesicular Cl more than extravesicular butyrate enhanced 36Cl efflux from apical membrane vesicles. These studies provide compelling evidence for the presence of an electroneutral, pH-activated, Cl-butyrate exchange which in concert with Na-H exchange is the mechanism by which butyrate stimulates electroneutral Na-Cl absorption.Abbreviations used AMV apical membrane vesicles - BLMV basolateral membrane vesicles - DIDS 4,4-diisothiocyanatostilbene 2,2-disulfonic acid - FCCP carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone - MES 1-[N-morpholino]ethanesulfonic acid - NMG N-memyl-d-glucamine - SCF Ashort chain fatty acid This study was supported in part by a Public Health Service research Grant (DK 14669) provided by the National Institute of Diabetes, Digestive and Kidney Diseases. Ms. Mary Guidone provided excellent secretarial assistance.  相似文献   

13.
Summary Exposing the apical membrane of toad urinary bladder to the ionophore nystatin lowers its resistance to less than 100 cm2. The basolateral membrane can then be studied by means of transepithelial measurements. If the mucosal solution contains more than 5mm Na+, and serosal Na+ is substituted by K+, Cs+, or N-methyl-d-glucamine, the basolateral membrane expresses what appears to be a large Na+ conductance, passing strong currents out of the cell. This pathway is insensitive to ouabain or vanadate and does not require serosal or mucosal Ca2+. In Cl-free SO 4 2– Ringer's solution it is the major conductive pathway in the basolateral membrane even though the serosal side has 60mm K+. This pathway can be blocked by serosal amiloride (K i=13.1 m) or serosal Na+ ions (K i 10 to 20mm). It also conducts Li+ and shows a voltage-dependent relaxation with characteristic rates of 10 to 20 rad sec–1 at 0 mV.  相似文献   

14.
Summary The action of the amino-reactive substances pyridoxal phosphate, 4-acetamido-4-isothiocyanato-stilbene-2,2-disulfonic acid and 2,4,6-trinitrobenzene sulfonic acid on the contraction threshold, taken as parameter for the initiation of contraction, was investigated in fibers of the sartorius muscle of the frog. The contraction threshold was shifted by 1 to 11 mV tomore negative potentials with 1 to 20mm PDP. Similar shifts from 2 to 17 mV were produced by 0.66 to 20mm SITS. The threshold shift was only partially reversible. The shift of the contraction threshold obtained with 2mm SITS was nearly constant at different [Ca2+]o and [Mg2+]o from 1.5 to 50mm with a tendency to increase at higher divalent cation concentration. TNBS had no effect on the contraction threshold.The action of PDP and SITS on the contraction threshold was successfully described by the surface charge model used earlier to explain the effect of lanthanum, neuraminidase and ruthenium red on the contraction threshold (M. Dörrscheidt-Käfer,Pfluegers Arch. 380:171–179, 181–187, 1979;J. Membrane Biol. 62:95–103, 1981). Here it was assumed that PDP and SITS bind to positive fixed charges on the surface of the T-tubular wall. This results in a shift of the calculated surface potential to more negative values which is thought to account for the measured shift of the contraction threshold.  相似文献   

15.
Summary The rate of luminal alkalinization in vitro byGillichthys mirabilis posterior intestine as measured by a manual pH stat technique was 0.70±0.05 Equiv/cm2 h; acidification of the mucosal medium was never observed. The rate of HCO 3 secretion (J HCO 3) was reduced by ouabain, serosally-applied DIDS, removal of serosal HCO 3 and replacement of media Cl with gluconate. HCO 3 secretion was enhanced replacement of Cl with isethionate and unaffected by mucosal DIDS, furosemide or acetazolamide.J HCO 3 was reduced at mucosal pH above or below 7.5. These results support active HCO 3 secretion via a Cl/HCO 3 exchange mechanism on the basolateral membrane and a conductive exit pathway for HCO 3 , H+ or OH on the apical membrane.Abbreviations DIDS diisothiocyanostilbene-2,2-disulfonic acid - TEP transepithelial potential - GBR Gillichthyts bicarbonate Ringer - GUR Gillichthys unbuffered, bicarbonate-free Ringer - GER Gillichthys EPPS-buffered, bicarbonate-free Ringer - EPPS N-(2-hydroxyethyl)piperazine-N-3-propanesulfonic acid  相似文献   

16.
Studies using lysosomal membrane vesicles have suggested that efflux of the sulfate that results from lysosomal glycosaminoglycan degradation is carrier-mediated. In this study, glycosaminoglycan degradation and sulfate efflux were examined using cultured skin fibroblasts and lysosomes deficient in the lysosomal enzymeN-acetylgalactosamine-4-sulfatase. Such fibroblasts store dermatan sulfate lysosomally, which could be labelled biosynthetically with Na 2 35 SO4. The addition of recombinantN-acetylgalactosamine-4-sulfatase to the media of35S labelled fibroblasts degraded up to 82% of the stored dermatan [35S] sulfate over a subsequent 96 h chase and released inorganic [35S] sulfate into the medium. In the presence of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS), sulfate was reused to a minor extent in newly synthesized proteoglycan. Isolated granules from recombinant enzyme supplemented fibroblasts degraded stored dermatan [35S]sulfate to sulfate which was rapidly released into the medium at a rate that was reduced by the extra-lysosomal presence of the lysosomal sulfate transport inhibitors SITS, Na2SO4 and Na2MoO4. SITS also inhibited dermatan sulfate turnover, although it had no effect on the action of purified recombinant enzymein vitro. These data imply that sulfate clearance occurred concomitantly with dermatan sulfate turnover in the lysosome even at high substrate loading, and that lysosome-derived sulfate, while available, is reutilized minimally in synthetic pathways.Abbreviations SITS 4-acetamido-4-isothiocyanatostilbene-2,-2-disulfonic acid - GAG glycosaminoglycan - 4S N-acetylgalactosamine-4-sulfatase - r4S recombinant humanN-acetylgalactosamine-4-sulfatase - PBS phosphate buffered saline - BME basal modified Eagle's medium - FBS fetal bovine serum - GalNAc4S-GlcA-GalitolNAc4S -(N-acetyl-d-galactosamine-4-sulfate)-(1–4)--d-glucuronic acid)-(1–3)-N-acetyl-d-[1-3H]galactosaminitol-4-sulfate - DS dermatan sulfate - MPS mucopolysaccharidosis  相似文献   

17.
Ion transport by rabbit colon   总被引:7,自引:0,他引:7  
Summary Descending rabbit colon, stripped ofmuscularis externa, absorbs Na and Cl under short-circuit conditions and exhibits a residual ion flux, consistent with HCO3 secretion, whose magnitude is approximately equal to the rate of active Cl absorption. Net K transport was not observed under short-circuit conditions. The results of ion replacement studies and of treatment with ouabain or amiloride suggest that the short-circuit currentI sc is determined solely by the rate of active Na transport and that the net movements of Cl and HCO3 are mediated by a Na-independent, electrically-neutral, anion exchange process. Cyclic AMP stimulates an electrogenic Cl secretion, abolishes HCO3 secretion but does not affect the rate of Na absorption under short-circuit conditions. Studies of the effect of transepithelial potential difference on the serosa-to-mucosa fluxesJ sm i of Na, K and Cl suggest thatJ sm Na ,J sm K and one-third ofJ sm Cl may be attributed to ionic diffusion. The permeabilities of the passive conductance pathway(s) are such thatP KP NaP Cl=1.00.070.11. Electrolyte transport byin vitro rabbit colon closely resembles that reported fromin vivo studies of mammalian colon and thus may serve as a useful model for the further study of colonic ion transport mechanisms.  相似文献   

18.
Summary We have previously shown that stimulation of apical Na-coupled glucose and alanine transport produces a transient depolarization of basolateral membrane potential (V bl) in rabbit proximal convoluted tubule (PCT. Sl segment). The present study is aimed at understanding the origin of the membrane repolarization following the intial effect of addition of luminal cotransported solutes. Luminal addition of 10–15mMl-alanine produced a rapid and highly significant depolarization ofV bl (20.3±1.1 mV,n=15) which was transient and associated with an increase in the fractional K+ conductance of the basolateral membrane (t K) from 8 to 29% (P<0.01,n=6). Despite the significant increase int K, the repolarization was only slightly reduced by the presence of basolateral Ba2+ (2mM,n=6) or quinine (0.5 mM,n=5). The repolarization was greatly reduced in the presence of 0.1 mM 4-acetamino-4isothiocyamostilbene-2,2-disulfonic acid (SITS) and blunted by bicarbonate-free solutions. Intracellular pH (pH i ) determined with the fluorescent dye 2, 7-bis-2-carboxyethyl-5(and-6)-carboxyfluorescein (BCECF), averaged 7.39±0.02 in control solution (n=9) and increased to 7.50±0.03 in the first 15 sec after the luminal application of alanine. This was followed by a significant acidification averaging 0.16±0.01 pH unit in the next 3 min. In conclusion, we believe that, contrary to other leaky epithelia, rabbit PCT can regulate its basolateral membrane potential not only through an increase in K+ conductance but also through a cellular acidification reducing the basolateral HCO 3 exit through the electrogenic Na-3(HCO3) cotransport mechanism.  相似文献   

19.
Summary The effect of bicarbonate (HCO3) on fluid absorption by guinea pig gallbladder was investigatedin vitro. Stimulation of fluid absorption was concentration dependent resulting in a fourfold increase in transport over the range 1 to 50mm. Phosphate, Tris, glycodiazine and glutamine buffers failed to substitutte for HCO3 in stimulating absorption. Unidirectional22Na fluxes were measured across short-circuited sheets of guinea pig and rabbit gallbladders mounted in Ussing-type chambers. In both species the net Na flux was unaffected by serosal HCO3 alone but was stimulated by addition of HCO3 to the mucosal bathing solution. Transepithelial electrical potential difference in rabbit gallbladder was about 1.4 mV (lumen positive) when HCO3 was present in the mucosal or in both compartments. This fell to 0.2 mV under HCO3-free conditions or when HCO3 was present only in the serosal solution. The respective values for guinea pig gallbladder were –1.6 and –0.6 mV (lumen negative). HCO3 stimulation of Na absorption by guinea pig gallbladder was abolished by increasing the bathing pH from 7.4 to 7.8, an effect resulting mainly from a reduction inJ mis Na . Tris buffer (25mm) inhibited HCO3-dependent fluid absorption in this species completely at pH 8.5 and partially at 7.5. These results indicate that HCO3 stimulates gallbladder transport in both species by an action from the mucosal side. This effect cannot be attributed to simple buffering of H+ but may be explained by the participation of HCO3 in the maintenance of intracellular H+ for a Na/H-exchange.  相似文献   

20.
Summary Bioelectrical parameters and unidirectional sodium and chloride fluxes were measured under voltageclamp conditions in groups of lizards submitted to single or chronic aldosterone treatment. Both acute (AT) and chronic (CT) treatment induced significant increases in the short-circuit current (I sc), as well as in the mucosa-to-serosa (J m-s Na ) and net sodium flux (J net Na ). In AT tissues, aldosterone did not change net chloride flux (J net Cl ) but did so in CT tissues. Amiloride reduced the aldosterone-increased I sc in AT and CT tissues, inhibited J net Na in AT tissues and abolished it in CT colons. J net Cl was also reduced by the diuretic in the group of AT colons, whereas no changes were observed in the CT tissues. Addition of luminal DIDS reduced Na+ absorption and totally inhibited Cl- absorption in the AT tissues, but did not change I sc. However, in CT tissues neither Na+ nor Cl- transport were affected by DIDS. A good relationship between I sc and J m-s Na was apparent after DIDS treatment in AT tissues. In this group, simultaneous addition of DIDS and amiloride totally abolished J net Na and reduced I sc to untreated control values. Addition of serosal ouabain abolished I sc and Na+ absorption in AT and CT colons, but Cl- absorption was only altered in AT tissues. These results support the hypothesis that aldosterone induces an electrogenic, amiloride-sensitive sodium absorption, and in a dose-dependent fashion suppresses electroneutral NaCl absorption in the lizard colon.Abbreviations AT acutely treated - CT chronically treated animals - DIDS 4-4-diisothiocyanatostibene-2-2-disulfonic acid - DMSO dimethylsulphoxide - G t tissue conductance - I sc short circuit current - PD transepithelial potential difference - SITS 4-acetamido-4-isothiocyanatostilbene-2-2-disulfonic acid - UC untreated controls Preliminary results of this paper were presented at the X th meeting of the European Intestinal Transport Group (EITG), Askov Hojskole, Denmark, 16–19 September 1990  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号