首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteins that fail to fold or assemble in the endoplasmic reticulum (ER) are generally dislocated across the membrane to be degraded by cytosolic proteasomes. To investigate how the quality control machinery handles individual subunits that are part of covalent oligomers, we have analyzed the fate of transport-competent Ig light (L) chains that form disulfide bonds with short-lived mu heavy chains. When expressed alone, L chains are secreted. In cells producing excess mu, most L chains are retained in the ER as covalent mu-L or mu2-L2 complexes. While mu chains present in these complexes are degraded by proteasomes, L chains are stable. Few L chains are secreted; most reassociate with newly synthesized mu chains. Therefore, interchain disulfide bonds are reduced in the ER lumen before the dislocation of mu chains in a site from which freed L chains can be rapidly reinserted in the assembly line. The ER can thus sustain the simultaneous formation and reduction of disulfide bonds.  相似文献   

2.
Stress-induced endogenous and ectopically expressed GADD34 proteins were present both in the cytoplasm and in membranes, with their membrane association showing similar biochemical properties. Deletion of N-terminal sequences in GADD34-GFP proteins highlighted an amphipathic helix, whose hydrophobic surface, specifically valine 25 and leucine 29, mediated endoplasmic reticulum (ER) localization. Substitution of leucines for three arginines on the polar surface indicated that the same helix also mediated the association of GADD34 with mitochondria. Fluorescence protease protection and chemical modification of cysteines substituted in the membrane-binding domain pointed to a monotopic insertion of GADD34 into the outer layer of the ER membrane. Fluorescence recovery after photobleaching showed that ER association retards the mobility of GADD34 in living cells. Both WT GADD34 and the mutant, V25R, effectively scaffolded the α-isoform of protein phosphatase-1 (PP1α) and enabled eIF2α dephosphorylation. However, the largely cytosolic V25R protein displayed a reduced rate of proteasomal degradation, and unlike WT GADD34, whose ectopic expression resulted in a dilated or distended ER, V25R did not modify ER morphology. These studies suggested that the association of with ER modulates intracellular trafficking and proteasomal degradation of GADD34, and in turn, its ability to modify ER morphology.  相似文献   

3.
Endoplasmic reticulum (ER)-associated degradation (ERAD) eliminates aberrant proteins from the ER by dislocating them to the cytoplasm where they are tagged by ubiquitin and degraded by the proteasome. Six distinct AAA-ATPases (Rpt1-6) at the base of the 19S regulatory particle of the 26S proteasome recognize, unfold, and translocate substrates into the 20S catalytic chamber. Here we show unique contributions of individual Rpts to ERAD by employing equivalent conservative substitutions of the invariant lysine in the ATP-binding motif of each Rpt subunit. ERAD of two substrates, luminal CPY*-HA and membrane 6myc-Hmg2, is inhibited only in rpt4R and rpt2RF mutants. Conversely, in vivo degradation of a cytosolic substrate, DeltassCPY*-GFP, as well as in vitro cleavage of Suc-LLVY-AMC are hardly affected in rpt4R mutant yet are inhibited in rpt2RF mutant. Together, we find that equivalent mutations in RPT4 and RPT2 result in different phenotypes. The Rpt4 mutation is manifested in ERAD defects, whereas the Rpt2 mutation is manifested downstream, in global proteasomal activity. Accordingly, rpt4R strain is particularly sensitive to ER stress and exhibits an activated unfolded protein response, whereas rpt2RF strain is sensitive to general stress. Further characterization of Rpt4 involvement in ERAD reveals that it participates in CPY*-HA dislocation, a function previously attributed to p97/Cdc48, another AAA-ATPase essential for ERAD of CPY*-HA but dispensable for proteasomal degradation of DeltassCPY*-GFP. Pointing to Cdc48 and Rpt4 overlapping functions, excess Cdc48 partially restores impaired ERAD in rpt4R, but not in rpt2RF. We discuss models for Cdc48 and Rpt4 cooperation in ERAD.  相似文献   

4.
To maintain protein homeostasis in secretory compartments, eukaryotic cells harbor a quality control system that monitors protein folding and protein complex assembly in the endoplasmic reticulum (ER). Proteins that do not fold properly or integrate into cognate complexes are degraded by ER-associated degradation (ERAD) involving retrotranslocation to the cytoplasm and proteasomal peptide hydrolysis. N-linked glycans are essential in glycoprotein ERAD; the covalent oligosaccharide structure is used as a signal to display the folding status of the host protein. In this study, we define the function of the Htm1 protein as an α1,2-specific exomannosidase that generates the Man7GlcNAc2 oligosaccharide with a terminal α1,6-linked mannosyl residue on degradation substrates. This oligosaccharide signal is decoded by the ER-localized lectin Yos9p that in conjunction with Hrd3p triggers the ubiquitin-proteasome–dependent hydrolysis of these glycoproteins. The Htm1p exomannosidase activity requires processing of the N-glycan by glucosidase I, glucosidase II, and mannosidase I, resulting in a sequential order of specific N-glycan structures that reflect the folding status of the glycoprotein.  相似文献   

5.
Accumulation of improperly folded polypeptides in the endoplasmic reticulum (ER) can trigger a stress response that leads to the export of aberrant proteins into the cytosol and their ultimate proteasomal degradation. Human cytomegalovirus encodes a type I glycoprotein, US11, that binds to nascent MHC class I heavy chain molecules and causes their dislocation from the ER to the cytosol where they are degraded by the proteasome. Examination of US11-mediated class I degradation has identified a host of cellular proteins involved in the dislocation reaction, including the cytosolic AAA ATPase p97, the membrane protein Derlin-1, and the E3 ubiquitin ligase Sel1L. However, the intermediate steps occurring between the initiation of dislocation and full extraction of the misfolded substrate into the cytosol are not known. We demonstrate that US11 itself undergoes ER export and proteasomal degradation and utilize this system to define multiple steps of US11 dislocation. Treatment of US11-expressing cells with proteasome inhibitor resulted in the accumulation of glycosylated and ubiquitinated species as well as a deglycosylated US11 intermediate. Subcellular fractionation of proteasome-inhibited US11 cells demonstrated that deglycosylated intermediates continued to be integrated within the ER membrane, suggesting that the proteasome functions in the latter steps of dislocation. The data supports a model in which US11 is modified with ubiquitin, whereas the transmembrane region is integrated in the ER membrane, and deglycosylation occurs before complete dislocation.  相似文献   

6.
Quality control in the endoplasmic reticulum must discriminate nascent proteins in their folding process from terminally unfolded molecules, selectively degrading the latter. Unassembled Ig-mu and J chains, two glycoproteins with five N-linked glycans and one N-linked glycan, respectively, are degraded by cytosolic proteasomes after a lag from synthesis, during which glycan trimming occurs. Inhibitors of mannosidase I (kifunensine), but not of mannosidase II (swainsonine), prevent the degradation of mu chains. Kifunensine also inhibits J chain dislocation and degradation, without inhibiting secretion of IgM polymers. In contrast, glucosidase inhibitors do not significantly affect the kinetics of mu and J degradation. These results suggest that removal of the terminal mannose from the central branch acts as a timer in dictating the degradation of transport-incompetent, glycosylated Ig subunits in a calnexin-independent way. Kifunensine does not inhibit the degradation of an unglycosylated substrate (lambda Ig light chains) or of chimeric mu chains extended with the transmembrane region of the alpha T cell receptor chain, implying the existence of additional pathways for extracting proteins from the endoplasmic reticulum lumen for proteasomal degradation.  相似文献   

7.
The crystalloid endoplasmic reticulum (ER) houses large amounts of HMG CoA reductase, the rate-controlling enzyme in cholesterol synthesis. The crystalloid ER appears in UT-1 cells, a line of Chinese hamster ovary cells that has been chronically starved of cholesterol as a result of growth in the presence of compactin, an inhibitor of reductase. When cholesterol was provided to UT-1 cells in the form of low density lipoprotein (LDL), the reductase and crystalloid ER were destroyed. This destruction was preceded by an increase in the cholesterol content of crystalloid ER membranes, as judged by a 4- to 8-fold increase in their ability to form complexes with filipin, a cholesterol-binding compound that can be visualized in freeze-fracture electron micrographs. Filipin binding to other membranes was unchanged. Thus insertion of cholesterol into the crystalloid ER membrane may trigger the degradation of reductase and the membrane itself.  相似文献   

8.
Analysis of the fate of HIV-1 envelope protein gp160 (Env) has shown that newly synthesized proteins may be degraded within the biosynthetic pathway and that this degradation may take place in compartments other than the lysosomes. The fate of newly synthesized Env was studied in living BHK-21 cells with the recombinant vaccinia virus expression system. We found that gp160 not only undergoes physiological endoproteolytic cleavage, producing gp120, but is also degraded, producing proteolytic fragments of 120 kDa to 26 kDa in size, as determined by SDS/PAGE in non reducing conditions. Analysis of the 120-kDa proteolytic fragment, and comparison with gp120, showed that it is composed of peptides linked by disulfides bonds and lacks the V3-loop epitope and the C-terminal domain of gp120 (amino acids 506-516). A permeabilized cell system, with impaired transport of labeled Env from the endoplasmic reticulum (ER) to Golgi compartments, was developed to determine the site of degradation and to define some biochemical characteristics of the intracellular degradation process. In the semipermeable BHK-21 cells, there was: (a) no gp120 production (b), a progressive decrease in the amount of newly synthesized gp160 and a concomitant increase in the amount of a 120-kDa proteolytic fragment. This fragment had the same biochemical characteristics as the 120-kDa proteolytic fragment found in living nonpermeabilized cells, and (c) susceptibility of the V3 loop. This degradation process occurred in the ER, as shown by both biochemical and indirect immunofluorescence analysis. Furthermore, there was evidence that changes in redox state are involved in the ER-dependent envelope degradation pathway because adding reducing agents to permeabilized cells caused dose-dependent degradation of the 120-kDa proteolytic fragment and of the remaining gp160 glycoprotein. Thus our results provide direct evidence that regulated degradation of the HIV-1 envelope glycoprotein may take place in the ER of infected cells.  相似文献   

9.
Newly synthesized glycoproteins interact during folding and quality control in the ER with calnexin and calreticulin, two lectins specific for monoglucosylated oligosaccharides. Binding and release are regulated by two enzymes, glucosidase II and UDP-Glc:glycoprotein:glycosyltransferase (GT), which cyclically remove and reattach the essential glucose residues on the N-linked oligosaccharides. GT acts as a folding sensor in the cycle, selectively reglucosylating incompletely folded glycoproteins and promoting binding of its substrates to the lectins. To investigate how nonnative protein conformations are recognized and directed to this unique chaperone system, we analyzed the interaction of GT with a series of model substrates with well defined conformations derived from RNaseB. We found that conformations with slight perturbations were not reglucosylated by GT. In contrast, a partially structured nonnative form was efficiently recognized by the enzyme. When this form was converted back to a nativelike state, concomitant loss of recognition by GT occurred, reproducing the reglucosylation conditions observed in vivo with isolated components. Moreover, fully unfolded conformers were poorly recognized. The results indicated that GT is able to distinguish between different nonnative conformations with a distinct preference for partially structured conformers. The findings suggest that discrete populations of nonnative conformations are selectively reglucosylated to participate in the calnexin/calreticulin chaperone pathway.  相似文献   

10.
Protein degradation in the endoplasmic reticulum   总被引:59,自引:0,他引:59  
R D Klausner  R Sitia 《Cell》1990,62(4):611-614
  相似文献   

11.
The second step of dolichol-linked oligosaccharide synthesis in the N-linked glycosylation pathway at the endoplasmic reticulum (ER) membrane is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryotes is comprised of at least two subunits, Alg13p and Alg14p. Alg13p is the cytosolic and catalytic subunit that is recruited to the ER by the membrane protein Alg14p. We show that in Saccharomyces cerevisiae, cytosolic Alg13p is very short-lived, whereas membrane-associated Alg13 is relatively stable. Cytosolic Alg13p is a target for proteasomal degradation, and the failure to degrade excess Alg13p leads to glycosylation defects. Alg13p degradation does not require ubiquitin but instead, requires a C-terminal domain whose deletion results in Alg13p stability. Conversely, appending this sequence onto normally long-lived beta-galactosidase causes it to undergo rapid degradation, demonstrating that this C-terminal domain represents a novel and autonomous degradation motif. These data lead to the model that proteasomal degradation of excess unassembled Alg13p is an important quality control mechanism that ensures proper protein complex assembly and correct N-linked glycosylation.  相似文献   

12.
The cell surface of the human parasite Leishmania mexicana is coated with glycosylphosphatidylinositol (GPI)-anchored macromolecules and free GPI glycolipids. We have investigated the intracellular trafficking of green fluorescent protein- and hemagglutinin-tagged forms of dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis in L. mexicana promastigotes. These functionally active chimeras are found in the same subcompartment of the endoplasmic reticulum (ER) as endogenous DPMS but are degraded as logarithmically growing promastigotes reach stationary phase, coincident with the down-regulation of endogenous DPMS activity and GPI biosynthesis in these cells. We provide evidence that these chimeras are constitutively transported to and degraded in a novel multivesicular tubule (MVT) lysosome. This organelle is a terminal lysosome, which is labeled with the endocytic marker FM 4-64, contains lysosomal cysteine and serine proteases and is disrupted by lysomorphotropic agents. Electron microscopy and subcellular fractionation studies suggest that the DPMS chimeras are transported from the ER to the lumen of the MVT via the Golgi apparatus and a population of 200-nm multivesicular bodies. In contrast, soluble ER proteins are not detectably transported to the MVT lysosome in either log or stationary phase promastigotes. Finally, the increased degradation of the DPMS chimeras in stationary phase promastigotes coincides with an increase in the lytic capacity of the MVT lysosome and changes in the morphology of this organelle. We conclude that lysosomal degradation of DPMS may be important in regulating the cellular levels of this enzyme and the stage-dependent biosynthesis of the major surface glycolipids of these parasites.  相似文献   

13.
Endoplasmic reticulum (ER) is responsible for folding of secreted and membrane proteins in eukaryotic cells. Disruption of ER protein folding leads to ER stress. Chronic ER stress can cause cell death and is proposed to underlie the pathogenesis of many human diseases. Inositol-requiring enzyme 1 (IRE1) directs a key unfolded protein response signaling pathway that controls the fidelity of ER protein folding. IRE1 signaling may be particularly helpful in preventing chronic ER stress and cell injury by alleviating protein misfolding in the ER. To examine this, we used a chemical-genetic approach to selectively activate IRE1 in mammalian cells and tested how artificial IRE1 signaling affected the fate of misfolded P23H rhodopsin linked to photoreceptor cell death. We found that IRE1 signaling robustly promoted the degradation of misfolded P23H rhodopsin without affecting its wild-type counterpart. We also found that IRE1 used both proteasomal and lysosomal degradation pathways to remove P23H rhodopsin. Surprisingly, when one degradation pathway was compromised, IRE1 signaling could still promote misfolded rhodopsin degradation using the remaining pathway. Last, we showed that IRE1 signaling also reduced levels of several other misfolded rhodopsins with lesser effects on misfolded cystic fibrosis transmembrane conductance regulator. Our findings reveal the diversity of proteolytic mechanisms used by IRE1 to eliminate misfolded rhodopsin.  相似文献   

14.
15.
A delay in intracellular degradation of the mutant alpha(1)-antitrypsin (alpha(1)AT)Z molecule is associated with greater retention within the endoplasmic reticulum (ER) and susceptibility to liver disease in a subgroup of patients with alpha(1)AT deficiency. Recent studies have shown that alpha(1)ATZ is ordinarily degraded in the ER by a mechanism that involves the proteasome, as demonstrated in intact cells using human fibroblast cell lines engineered for expression of alpha(1)ATZ and in a cell-free microsomal translocation assay system programmed with purified alpha(1)ATZ mRNA. To determine whether the ubiquitin system is required for proteasomal degradation of alpha(1)ATZ and whether specific components of the ubiquitin system can be implicated, we have now used two approaches. First, we overexpressed a dominant-negative ubiquitin mutant (UbK48R-G76A) by transient transfection in the human fibroblast cell lines expressing alpha(1)ATZ. The results showed that there was marked, specific, and selective inhibition of alpha(1)ATZ degradation mediated by UbK48R-G76A, indicating that the ubiquitin system is at least in part involved in ER degradation of alpha(1)ATZ. Second, we subjected reticulocyte lysate to DE52 chromatography and tested the resulting well-characterized fractions in the cell-free system. The results showed that there were both ubiquitin-dependent and -independent proteasomal mechanisms for degradation of alpha(1)ATZ and that the ubiquitin-conjugating enzyme E2-F1 may play a role in the ubiquitin-dependent proteasomal mechanism.  相似文献   

16.
Numerous integral membrane proteins are degraded in the mammalian ER. HMG-CoA reductase (HMG-R), a key enzyme in the mevalonate pathway by which isoprenoids and sterols are synthesized, is one substrate of ER degradation. The degradation of HMG-R is modulated by feedback signals from the mevalonate pathway. We investigated the role of regulated degradation of the two isozymes of HMG-R, Hmg1p and Hmg2p, in the physiology of Saccharomyces cerevisiae. Hmg1p was quite stable, whereas Hmg2p was rapidly degraded. Degradation of Hmg2p proceeded independently of vacuolar proteases or secretory traffic, indicating that Hmg2p degradation occurred at the ER. Hmg2p stability was strongly affected by modulation of the mevalonate pathway through pharmacological or genetic means. Decreased mevalonate pathway flux resulted in decreased degradation of Hmg2p. One signal for degradation of Hmg2p was a nonsterol, mevalonate-derived molecule produced before the synthesis of squalene. Genetic evidence indicated that a farnesylated protein may also be necessary for Hmg2p degradation. Studies with reporter genes demonstrated that the stability of each isozyme was determined by its noncatalytic NH2-terminal domain. Our data show that ER protein degradation is widely conserved among eukaryotes, and that feedback control of HMG-R degradation is an ancient paradigm of regulation.  相似文献   

17.
The endoplasmic reticulum (ER) is involved in many critical processes, including protein and lipid synthesis and calcium storage. Morphologically, the ER can be divided into two subdomains: a network of interconnected tubules and interspersed sheets. Until recently, how these different compartments form in a continuous membrane system was unclear. Several classes of integral membrane proteins have been identified in the ER; the reticulons and DP1/Yop1p play roles in the generation of ER tubules, and possibly in stabilizing ER sheets, atlastins and Sey1p are dynamin-like GTPases that facilitate tubular network formation by mediating ER membrane fusion, and Climp63, p180, and kinectin are enriched in ER sheets and influence their formation. In this review, we summarize recent advances in our understanding of how these proteins participate in ER shaping. We also discuss possible mechanisms for regulating ER morphology via the cytoskeleton. Lessons learned about sculpting the ER membrane may be applicable to other organelles.  相似文献   

18.
The loss of proteostasis due to reduced efficiency of protein degradation pathways plays a key role in multiple age-related diseases and is a hallmark of the aging process. Paradoxically, we have previously reported that the Caenorhabditis elegans rpn-10(ok1865) mutant, which lacks the RPN-10/RPN10/PSMD4 subunit of the 19S regulatory particle of the 26S proteasome, exhibits enhanced cytosolic proteostasis, elevated stress resistance and extended lifespan, despite possessing reduced proteasome function. However, the response of this mutant against threats to endoplasmic reticulum (ER) homeostasis and proteostasis was unknown. Here, we find that the rpn-10 mutant is highly ER stress resistant compared to the wildtype. Under unstressed conditions, the ER unfolded protein response (UPR) is activated in the rpn-10 mutant as signified by increased xbp-1 splicing. This primed response appears to alter ER homeostasis through the upregulated expression of genes involved in ER protein quality control (ERQC), including those in the ER-associated protein degradation (ERAD) pathway. Pertinently, we find that ERQC is critical for the rpn-10 mutant longevity. These changes also alter ER proteostasis, as studied using the C. elegans alpha-1 antitrypsin (AAT) deficiency model, which comprises an intestinal ER-localised transgenic reporter of an aggregation-prone form of AAT called ATZ. The rpn-10 mutant shows a significant reduction in the accumulation of the ATZ reporter, thus indicating that its ER proteostasis is augmented. Via a genetic screen for suppressors of decreased ATZ aggregation in the rpn-10 mutant, we then identified ecps-2/H04D03.3, a novel ortholog of the proteasome-associated adaptor and scaffold protein ECM29/ECPAS. We further show that ecps-2 is required for improved ER proteostasis as well as lifespan extension of the rpn-10 mutant. Thus, we propose that ECPS-2-proteasome functional interactions, alongside additional putative molecular processes, contribute to a novel ERQC adaptation which underlies the superior proteostasis and longevity of the rpn-10 mutant.  相似文献   

19.
Sec12p is a membrane glycoprotein required for the formation of a vesicular intermediate in protein transport from the endoplasmic reticulum to the Golgi apparatus in Saccharomyces cerevisiae. Comparison of the N-linked glycosylation of Sec12p, a Sec12p-invertase hybrid protein, and a derivative of Sec12p lacking 71 carboxy-terminal amino acids showed that Sec12p is a type II membrane protein. Analysis of two truncated forms of Sec12p and of a temperature-sensitive mutant indicated that the C-terminal domain of Sec12p is not essential for protein transport, whereas the integrity and membrane attachment of the cytoplasmic N-terminal domain are essential. Expression of a soluble cytoplasmic domain dramatically inhibited the growth of a sec12 temperature-sensitive strain by increasing the transport defect at a normally permissive temperature. This growth inhibition as well as the sec12 temperature-sensitive defect were suppressed by the overproduction of Sar1p, a small GTP-binding protein that participates in protein transport. Sar1p membrane association was enhanced by elevated levels of Sec12p. These results suggest that the cytoplasmic domain of Sec12p interacts with Sar1p and that the complex may function to promote vesicle formation.  相似文献   

20.
There are an increasing number of ubiquitin ligases (E3s) implicated in endoplasmic reticulum (ER)-associated degradation (ERAD) in mammals. The two for which the greatest amount of information exists are the RING finger proteins gp78 and Hrd1, which are the structural orthologs of the yeast ERAD E3 Hrd1p. We now report that Hrd1, also known as synoviolin, targets gp78 for proteasomal degradation independent of the ubiquitin ligase activity of gp78, without evidence of a reciprocal effect. This degradation is observed in mouse embryonic fibroblasts lacking Hrd1, as well as with acute manipulation of Hrd1. The significance of this is underscored by the diminished level of a gp78-specific substrate, Insig-1, when Hrd1 expression is decreased and gp78 levels are consequently increased. These finding demonstrate a previously unappreciated level of complexity of the ubiquitin system in ERAD and have potentially important ramifications for processes where gp78 is implicated including regulation of lipid metabolism, metastasis, cystic fibrosis and neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号