首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Snell  Terry W.  Serra  Manuel 《Hydrobiologia》1998,368(1-3):29-35
New tools for analyzing ecological time series have permitted the construction of rigorous models from relatively short series. We have applied these techniques to abundance data for nine natural rotifer populations to construct realistic models of their dynamics. Species included are Asplanchna girodi, Filinia pejleri, Keratella tropica, Monostyla bulla, Brachionus rotundiformis, and four other Brachionus species. The overall shapes of the time series were similar with an initial peak followed by oscillations of varying amplitude around a mean of lower population density. Auto correlation functions (ACF) for all populations were positive at small time lags and decayed rapidly to zero. This suggest that these are stationary, exponentially damped time series, fluctuating arround a constant mean with constant variance. The rapid decay of the ACFs indicates that the effect of a perturbation on these populations is quickly removed in one or two days. Phase portrait plots of log current population density vs log lagged density indicate that the time series are stable and non-chaotic. One type of model yielded the highest R2 for four of the nine species and was designated the consensus model. The mean R2 of this model for all nine species was 0.53 with a coefficient of variation of 38%. Lyapanov exponents were strongly negative, indicating that these populations rapidly return to equilibrium after an exogenous perturbation. Rotifer populations appear to be tracking very recent perturbations and their dynamics cannot be predicted from perturbations in the more distant past. We investigated the effects of increasing the level of stochasticity in the consensus model on the length of the growing season and resting egg production. Increasing stochastic variance increased the probability of extremely low population densities, shortening the growing season. In shorter growing seasons, fewer resting eggs were produced, other factors being equal. Counteracting this negative effect, was an increased probability of extremely high populations densities which increased mixis and resting egg production. Constructing models accurately depicting the dynamics of natural zooplankton populations should improve aquatic ecosystem models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
D. bipectinata and D. malerkotliana differ from each other by three overlapping inversions in IIL, two included inversions in IIIL and two overlapping inversions in IIIR. These inversions were analysed on the basis of the salivary chromosome maps of D. malerkotliana. Bock's (1971) data revealed that the four members of the bipectinata species complex differ from each other with respect to overlapping inversions. The reason why the ancestral population which may have been heterozygous for common inversions split into at least four groups, each leading to the formation of a new species, and the possible mechanism of the origin of sexual isolation between the groups is discussed.  相似文献   

3.
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally‐mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.  相似文献   

4.
5.
Adult neurogenesis in natural populations   总被引:2,自引:0,他引:2  
The dogma that the adult brain produces no new neurons has been overturned, but the critics are still asking, so what? Is adult neurogenesis a biologically relevant phenomenon, or is it perhaps harmful because it disrupts the existing neuronal circuitry? Considering that the phenomenon is evolutionarily conserved in all mammalian species examined to date and that its relevance has been well documented in non-mammalian species, it seems self-evident that neurogenesis in adult mammals must have a role. In birds, it has been established that neurogenesis varies dramatically with seasonal changes in song production. In chickadees, the learning behaviour related to finding stored food is also correlated with seasonal adult neurogenesis. Such studies are still nonexistent in mammals, but the related evidence suggests that neurogenesis does vary seasonally in hamsters and shows sexual differences in meadow voles. To promote studies on natural populations asking fundamental questions of the purpose and function of neurogenesis, we organized a Workshop on "Hippocampal Neurogenesis in Natural Populations" in Toronto in May 2000. The Workshop highlighted recent discoveries in neurogenesis from the lab, and focused on its functional consequences. The consensus at the Workshop was that demonstration of a role for neurogenesis in natural behaviours will ultimately be essential if we are to understand the purpose and function of neurogenesis in humans.  相似文献   

6.
Competition in natural populations of Daphnia   总被引:4,自引:0,他引:4  
Maarten Boersma 《Oecologia》1995,103(3):309-318
I investigated the competitive relationships between two species of Daphnia, D. galeata and D. cucullata, and their interspecific hybrid. The term hemispecific competition was introduced to describe competition between parental species and hybrids. In eutrophic Tjeukemeer both parental species were found to compete with the hybrid, whereas competition between D. galeata and D. cucullata seemed limited. Although the effect of competition on life history traits of daphnids may be profound, the influence of the competitors on the seasonal dynamics of the Daphnia species seems limited.  相似文献   

7.
8.
Quantitative genetic studies in natural populations have been rare because they require large breeding programmes or known pedigrees. The relatedness that has been estimated from molecular markers can now be used to substitute for breeding, allowing studies of previously inaccessible species. Many behavioural ecologists have a sufficient number of markers and study species with characteristics that are amenable to this approach. It is now time to combine studies of selection with studies of genetic variation for a more complete understanding of behavioural evolution.  相似文献   

9.
10.
11.
Natural populations v. inbred stocks provide a much richer resource for identifying the effects of nucleotide substitutions because natural populations have greater polymorphism. Additionally, natural populations offer an advantage over most common research organisms because they are subject to natural selection, and analyses of these adaptations can be used to identify biologically important changes. Among fishes, these analyses are enhanced by having a wide diversity of species (>28 000 species, more than any other group of vertebrates) living in a huge range of environments (from below freezing to > 46° C, in fresh water to salinities >40 ppt.). Moreover, fishes exhibit many different life‐history and reproductive strategies and have many different phenotypes and social structures. Although fishes provide numerous advantages over other vertebrate models, there is still a dearth of available genomic tools for fishes. Fishes make up approximately half of all known vertebrate species, yet <0·2% of fish species have significant genomic resources. Nonetheless, genomic approaches with fishes have provided some of the first measures of individual variation in gene expression and insights into environmental and ecological adaptations. Thus, genomic approaches with natural fish populations have the potential to revolutionize fundamental studies of diverse fish species that offer myriad ecological and evolutionary questions.  相似文献   

12.
Lynch M 《Genetical research》1999,74(3):255-264
Information on the genetic correlation between traits provides fundamental insight into the constraints on the evolutionary process. Estimates of such correlations are conventionally obtained by raising individuals of known relatedness in artificial environments. However, many species are not readily amenable to controlled breeding programmes, and considerable uncertainty exists over the extent to which estimates derived under benign laboratory conditions reflect the properties of populations in natural settings. Here, non-invasive methods that allow the estimation of genetic correlations from phenotypic measurements derived from individuals of unknown relatedness are introduced. Like the conventional approach, these methods demand large sample sizes in order to yield reasonably precise estimates, and special precautions need to be taken to eliminate bias from shared environmental effects. Provided the sample consists of at least 20% or so relatives, informative estimates of the genetic correlation are obtainable with sample sizes of several hundred individuals, particularly if supplemental information on relatedness is available from polymorphic molecular markers.  相似文献   

13.
Summary Mark-release-recapture experiments performed with natural populations of Drosophila at Mather, California show that flies tend to return to their area of original capture or an area ecologically similar to it. Such habitat choice explains the microgeographic genetic differentiation we observed in the population. This behavioral difference between the flies may have a genetic component or may be environmentally induced. Either way, the results help explain how high levels of genetic variation are maintained by natural selection in these species.  相似文献   

14.
Methods of parentage analysis in natural populations   总被引:8,自引:0,他引:8  
Jones AG  Ardren WR 《Molecular ecology》2003,12(10):2511-2523
The recent proliferation of hypervariable molecular markers has ushered in a surge of techniques for the analysis of parentage in natural and experimental populations. Consequently, the potential for meaningful studies of paternity and maternity is at an all-time high. However, the details and implementation of the multifarious techniques often differ in subtle ways that can influence the results of parentage analyses. Now is a good time to reflect on the available techniques and to consider their strengths and weaknesses. Here, we review the leading techniques in parentage analysis, with a particular emphasis on those that have been implemented in readily useable software packages. Our survey leads to some important insights with respect to the utility of the different approaches. This review should serve as a useful guide to anyone who wishes to embark on the study of parentage.  相似文献   

15.
Summary Adult tolerance of ethanol vapour in a closed system containing 12% ethanol in solution, decreases in a cline from southern to northern Australia. However a Darwin population is more tolerant than predicted from its latitude. Ethanol tolerance races in Australia have almost certainly evolved within the last 100–150 years, because of resource unavailability prior to that time. Within populations, variation among isofemale strains is lowest in the climatically extreme southern Melbourne (37°S) and northern Darwin and Melville I. (11–12°S) populations. This suggests low resource diversity within extreme populations compared with the climatically less extreme Brisbane (28°S) and especially Townsville (19°S) populations. For desiccation resistance, the population rankings are: Darwin Melbourne > Townsville > Brisbane Melville I. and for development time, rankings are similar: Darwin Melbourne < Townsville < Brisbane Melville I.Therefore resource utilization heterogeneity is greatest in populations not greatly stressed by desiccation and where development times are extended. In total therefore, the utilization of a diversity of resources is a feature of populations tending somewhat towards a K-strategy; this is emphasized by the relative heterogeneity among isofemale strains of these populations for desiccation resistance and to a lesser extent development times.The D. melanogaster gene pool can be viewed as made up of climate-associated races. Since the ethanol tolerances of adjacent (and climatically similar) Darwin and Melville I. are very different, resource utilization races may occur within climatic races. Such a mosaic of resource utilization races are more likely in climatically extreme than in optimal habitats.  相似文献   

16.
Life tables for natural populations of animals   总被引:22,自引:0,他引:22  
  相似文献   

17.
Genetic variation of Drosophila melanogaster natural populations   总被引:9,自引:0,他引:9  
  相似文献   

18.
19.
A theoretical framework for interpreting flow cytometric histograms from homogeneous phytoplankton populations was developed in part I of this series of articles and applied to chlorophyll fluorescence histograms from clonal cultures in part II. In this paper, we demonstrate the application of this framework to the analysis of cell volume distributions found in a natural assemblage of phytoplankton from the Gulf of California. Flow cytometric analyses of a surface water sample incubated for a period of 61 h revealed the sequential growth and decline of three distinct subpopulations. Cell volume distributions for each subpopulation measured at different times were analyzed, and the theoretical density function described in parts I and II was fitted to these distributions. The range of cell volumes within each subpopulation was similar to that predicted for asynchronous populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号