首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We incorporated 69 microsatellite loci into an existing data set of 132 markers to test for quantitative trait loci (QTLs) affecting spawning date and body weight in a backcross between two outbred strains of rainbow trout (Oncorhynchus mykiss). Twenty-six linkage groups were identified and synteny of duplicated microsatellite markers was used to confirm 13 homeologous chromosome pairs. Gene-centromere data were used to localize the centromeres for 13 linkage groups whose orientations were previously unknown. We applied a combination of interval mapping and single marker analysis to the segregating maternal and paternal alleles at 201 microsatellite loci. Four spawning date QTLs with suggestive evidence for an additional two QTLs were detected in female trout spawning at 3 and 4 years of age. Similarly we detected three QTLs for body weight in females at 2 years of age plus four suggestive QTLs for this trait. We found marginal evidence that three pairs of ancestral homeologues contained detectable QTLs for the same trait. In one of the three pairs of homeologues, the duplicated QTL regions mapped to the same relative chromosomal location, while the exact localization of the QTL position in one of the other pairs was difficult to infer since it was based on data from a male-derived map. The existing data were unable to refute a hypothesis that duplicated functional genes will be maintained within the telomeric regions of salmonids due to preferential male-mediated crossing over in this region. Two of the four spawning date QTLs were detected on linkage groups with unknown homeologous relationships. QTLs with possible pleiotropic effects on both spawning date and body size were localized to two linkage groups.  相似文献   

2.
Quantitative trait loci (QTLs) for body weight and tail length are mapped in an F2 population of 927 C57BL/6J × DBA/2J mice. We test the concordance between the locations of the mapped QTLs with those detected by changes of marker frequency under artificial selection in a previous experiment with the same base population. The directions of effects of the QTLs are generally in agreement, and in many cases significant QTLs are found in similar map positions, but there are also discrepancies between the two experiments. There are indications of age-specific QTL effects on growth. For body weight traits, the genetic variation in the F2 appears to result from many loci with relatively small effects. For tail length at 10 weeks, however, a single QTL on Chromosome (Chr) 1 with a peak LOD score of ∼33 contributes most of the genetic variation detected, changes the trait value by about 6%, and explains about 20% of the phenotypic variance of the trait. Received: 4 August 1998 / Accepted: 17 November 1998  相似文献   

3.
Quantitative Trait Loci for Murine Growth   总被引:24,自引:6,他引:18       下载免费PDF全文
Body size is an archetypal quantitative trait with variation due to the segregation of many gene loci, each of relatively minor effect, and the environment. We examine the effects of quantitative trait loci (QTLs) on age-specific body weights and growth in the F(2) intercross of the LG/J and SM/J strains of inbred mice. Weekly weights (1-10 wk) and 75 microsatellite genotypes were obtained for 535 mice. Interval mapping was used to locate and measure the genotypic effects of QTLs on body weight and growth. QTL effects were detected on 16 of the 19 autosomes with several chromosomes carrying more than one QTL. The number of QTLs for age-specific weights varied from seven at 1 week to 17 at 10 wk. The QTLs were each of relatively minor, subequal effect. QTLs affecting early and late growth were generally distinct, mapping to different chromosomal locations indicating separate genetic and physiological systems for early and later murine growth.  相似文献   

4.
Objective: Previous studies in mice have detected quantitative trait loci (QTLs) on chromosome 7 that affect body composition. As a step toward identifying the responsible genes, we compared a chromosome 7 substitution strain C57BL/6J‐Chr7129S1/SvImJ/Na (CSS‐7) to its host (C57BL/6J) strain. Methods and Procedures: Fourteen‐week‐old mice were measured for body size (weight, length), organ weight (brain, heart, liver, kidneys, and spleen), body and bone composition (fat and lean weight; bone area, mineral content, and density), and individual adipose depot weights (gonadal, retroperitoneal, mesenteric, inguinal, and subscapular). Differences between the CSS‐7 strain and the host strain were interpreted as evidence for the presence of one or more QTLs on chromosome 7. Results: Using this criterion, we detected QTLs for body weight, bone area, bone mineral content, brain, and heart weight, most adipose depot weights and some indices of fatness. A few strain differences were more pronounced in males (e.g., most adiposity measures) and others were more pronounced in females (e.g., bone area). QTLs for body length, lean weight, bone mineral density, and kidney, spleen, and liver weight were not detected. Discussion: This study found several associations that suggest one or more QTLs specific to the weight of select tissues and organs exist on mouse chromosome 7. Because these loci are detectable on a fixed and uniform genetic background, they are reasonable targets for high‐resolution mapping and gene identification using a congenic approach.  相似文献   

5.
A large intercross between the domestic White Leghorn chicken and the wild ancestor, the red junglefowl, has been used in a Quantitative Trait Loci (QTL) study of growth and egg production. The linkage map based on 105 marker loci was in good agreement with the chicken consensus map. The growth of the 851 F2 individuals was lower than both parental lines prior to 46 days of age and intermediate to the two parental lines thereafter. The QTL analysis of growth traits revealed 13 loci that showed genome-wide significance. The four major growth QTLs explained 50 and 80% of the difference in adult body weight between the founder populations for females and males, respectively. A major QTL for growth, located on chromosome 1 appears to have pleiotropic effects on feed consumption, egg production and behaviour. There was a strong positive correlation between adult body weight and average egg weight. However, three QTLs affecting average egg weight but not body weight were identified. An interesting observation was that the estimated effects for the four major growth QTLs all indicated a codominant inheritance.  相似文献   

6.
M. D. Edwards  C. W. Stuber    J. F. Wendel 《Genetics》1987,116(1):113-125
Individual genetic factors which underlie variation in quantitative traits of maize were investigated in each of two F2 populations by examining the mean trait expressions of genotypic classes at each of 17-20 segregating marker loci. It was demonstrated that the trait expression of marker locus classes could be interpreted in terms of genetic behavior at linked quantitative trait loci (QTLs). For each of 82 traits evaluated, QTLs were detected and located to genomic sites. The numbers of detected factors varied according to trait, with the average trait significantly influenced by almost two-thirds of the marked genomic sites. Most of the detected associations between marker loci and quantitative traits were highly significant, and could have been detected with fewer than the 1800-1900 plants evaluated in each population. The cumulative, simple effects of marker-linked regions of the genome explained between 8 and 40% of the phenotypic variation for a subset of 25 traits evaluated. Single marker loci accounted for between 0.3% and 16% of the phenotypic variation of traits. Individual plant heterozygosity, as measured by marker loci, was significantly associated with variation in many traits. The apparent types of gene action at the QTLs varied both among traits and between loci for given traits, although overdominance appeared frequently, especially for yield-related traits. The prevalence of apparent overdominance may reflect the effects of multiple QTLs within individual marker-linked regions, a situation which would tend to result in overestimation of dominance. Digenic epistasis did not appear to be important in determining the expression of the quantitative traits evaluated. Examination of the effects of marked regions on the expression of pairs of traits suggests that genomic regions vary in the direction and magnitudes of their effects on trait correlations, perhaps providing a means of selecting to dissociate some correlated traits. Marker-facilitated investigations appear to provide a powerful means of examining aspects of the genetic control of quantitative traits. Modifications of the methods employed herein will allow examination of the stability of individual gene effects in varying genetic backgrounds and environments.  相似文献   

7.
The genetic basis of heading time in wheat (Triticum aestivum L.) was investigated through the study of flowering under normal autumn sown field conditions as well as photoperiod responses under a controlled environment. Quantitative trait loci (QTLs) for these traits were mapped in a doubled-haploid (DH) population derived from a cross between the wheat cultivars 'Courtot' and 'Chinese Spring'. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 380 markers was used for QTL mapping. The genome was well covered (85%) except for chromosomes 1D and 4D, and a set of anchor loci regularly spaced over the genome (one marker each 15.5 cM) was chosen for marker regression analysis. The presence of a QTL was declared at a significance threshold of alpha = 0.005. The population was grown under field conditions in Clermont-Ferrand, France during two years (1994-1995), in Norwich, U.K. over one year (1998), and also under controlled environments in Norwich. For each trait, between 2 and 4 QTLs were identified with individual effects ranging between 6.3% and 44.4% of the total phenotypic variation. Two QTLs were detected that simultaneously affected heading time and photoperiod response. For heading time, these two QTLs were detected in more than one year. One QTL located on chromosome arm 2BS near the locus Xfbb121-2B, co-segregated with the gene Ppd-B1 known to be involved in photoperiod response. This chromosome region explained a large part of the variation (23.4-44.4% depending on the years or the traits). Another region located on chromosome arm 7BS between the loci Xfbb324-7B and Xfbb53-7B also had a strong effect (7.3-15.3%). This region may correspond to a QTL for earliness per se.  相似文献   

8.
Yield-enhancing quantitative trait loci (QTLs) from wild species   总被引:1,自引:0,他引:1  
Wild species of crop plants are increasingly being used to improve various agronomic traits including yield in cultivars. Dense molecular maps have enabled mapping of quantitative trait loci (QTLs) for complex traits such as yield. QTLs for increased yield have been identified from wild relatives of several crop plants. Advanced backcross QTL analysis has been used to identify naturally occurring favorable QTL alleles for yield and minimize the effect of unwanted alleles from wild species. Yield QTLs from wild species are distributed on almost all chromosomes but more often in some regions. Many QTLs for yield and related traits derived from different wild accessions or species map to identical chromosomal regions. QTLs for highly correlated yield associated traits are also often co-located implying linkage or pleiotropic effects. Many QTLs have been detected in more than one environment and in more than one genetic background. The overall direction of effect of some QTLs however, may vary with genetic context. Thus, there is evidence of stable and consistent major effect yield-enhancing QTLs derived from wild species in several crops. Such QTLs are good targets for use in marker assisted selection though their context-dependency is a major constraint. Literature on yield QTLs mapped from wild species is summarized with special reference to rice and tomato.  相似文献   

9.
Quantitative trait loci (QTLs) have been revealed for characters in a segregating population from a spring barley cross between genotypes adapted to North-West Europe. Transgressive segregation was found for all the characters, which was confirmed by the regular detection of positive and negative QTLs from both parents. A QTL for all the agronomic, yield and grain characters measured except thousand grain weight was found in the region of the denso dwarfing gene locus. There were considerable differences between the location of QTLs found in the present study and those found in previous studies of North American germ plasm, revealing the diversity between the two gene pools. Thirty-one QTLs were detected in more than one environment for the 13 characters studied, although many more were detected in just one environment. Whilst biometrical analyses suggested the presence of epistasis in the genetic control of some characters, there was little evidence of interactions between the QTLs apart from those associated with yield. QTLs of large effect sometimes masked the presence of QTLs of smaller effect.  相似文献   

10.
Quantitative trait loci (QTLs) for three traits related to ear morphology (spike length, number of spikelets, and compactness as the ratio between number of spikelets and spike length) in wheat (Triticum aestivum L.) were mapped in a doubled-haploid (DH) population derived from the cross between the cultivars Courtot and Chinese Spring. A molecular marker linkage map of this cross that had previously been constructed based on 187 DH lines and 380 markers was used for QTL mapping. The genome was well covered (85%) except chromosomes 1D and 4D and a set of anchor loci regularly spaced (one marker each 15.5 cM) were chosen for marker regression analysis. The presence of a QTL was declared at a significance threshold = 0.001. The population was grown in one location under field conditions during three years (1994, 1995 and 1998). For each trait, 4 to 6 QTLs were identified with individual effects ranging between 6.9% and 21.8% of total phenotypic variation. Several QTLs were detected that affected more than one trait. Of the QTLs 50% were detected in more than one year and two of them (number of spikelets on chromosome 2B, and compactness on chromosome 2D) emerged from the data from the three years. Only one QTL co-segregated with the gene Q known to be involved in ear morphology, namely the speltoid phenotype. However, this chromosome region explained only a minor part of the variation (7.5–11%). Other regions had a stronger effect, especially two previously unidentified regions located on chromosomes 1A and 2B. The region on the long arm of chromosome 1A was close to the locus XksuG34-1A and explained 12% of variation in spike length and 10% for compactness. On chromosome 2B, the QTL was detected for the three traits near the locus Xfbb121-2B. This QTL explained 9% to 22% of variation for the traits and was located in the same region as the gene involved in photoperiod response (Ppd2). Other regions were located at homoeologous positions on chromosomes 2A and 2D.  相似文献   

11.
以粳稻Azucena为父本与灿稻IR64杂交发展的一双单倍体(DH) 本,与灿稻IR1552杂交发展的一重组自交系(RI)群体为材料,应用分子标记图说对2个群体在大田答舅栽2个环境下的穗长进行QTLs及上位性效应分析,DH群体中共检测6个穗长QTLs,位于第1、4长染色体上的3个QTLs,,在2个环境中稳定表达,未检测一闰性效应,加性效应为穗长遗传主效应,RI群体中,共检测到3个穗长QTLs及6对  相似文献   

12.
J. Doebley  A. Stec 《Genetics》1993,134(2):559-570
Molecular marker loci (MMLs) were employed to map quantitative trait loci (QTLs) in an F(2) population derived from a cross of maize (Zea mays ssp. mays) and its probable progenitor, teosinte (Z. mays ssp. parviglumis). A total of 50 significant associations (putative QTLs) between the MMLs and nine key traits that distinguish maize and teosinte were identified. Results from this analysis are compared with our previous analysis of an F(2) population derived from a cross of a different variety of maize and another subspecies of teosinte (Z. mays ssp. mexicana). For traits that measure the architectural differences between maize and teosinte, the two F(2) populations possessed similar suites of QTLs. For traits that measure components of yield, substantially different suites of QTLs were identified in the two populations. QTLs that control about 20% or more of the phenotypic variance for a trait in one population were detected in the other population 81% of the time, while QTLs that control less than 10% of the variance in one population were detected in the other population only 28% of the time. In our previously published analysis of the maize X ssp. mexicana population, we identified five regions of the genome that control most of the key morphological differences between maize and teosinte. These same five regions also control most of the differences in the maize X ssp. parviglumis population. Results from both populations support the hypothesis that a relatively small number of loci with large effects were involved in the early evolution of the key traits that distinguish maize and teosinte. It is suggested that loci with large effects on morphology may not be a specific feature of crop evolution, but rather a common phenomenon in plant evolution whenever a species invades a new niche with reduced competition.  相似文献   

13.
This paper examines the properties of likelihood maps generated by interval mapping (IM) and composite interval mapping (CIM), two widely used methods for detecting quantitative trait loci (QTLs). We evaluate the usefulness of interpretations of entire maps, rather than only evaluating summary statistics that consider isolated features of maps. A simulation study was performed in which traits with varying genetic architectures, including 20-40 QTLs per chromosome, were examined with both IM and CIM under different marker densities and sample sizes. IM was found to be an unreliable tool for precise estimation of the number and locations of individual QTLs, although it has greater power for simply detecting the presence of QTLs than CIM. The ability of CIM to resolve the correct number of QTLs and to estimate their locations correctly is good if there are three or fewer QTLs per 100 centiMorgans, but can lead to erroneous inferences for more complex architectures. When the underlying genetic architecture of a trait consists of several QTLs with randomly distributed effects and locations likelihood profiles were often indicative of a few underlying genes of large effect. Studies that have detected more than a few QTLs per chromosome should be interpreted with caution.  相似文献   

14.
Development of high-yielding wheat varieties with good end-use quality has always been a major concern for wheat breeders. To genetically dissect quantitative trait loci (QTLs) for yield-related traits such as grain yield, plant height, maturity, lodging, test weight and thousand-grain weight, and for quality traits such as grain and flour protein content, gluten strength as evaluated by mixograph and SDS sedimentation volume, an F1-derived doubled haploid (DH) population of 185 individuals was developed from a cross between a Canadian wheat variety “AC Karma” and a breeding line 87E03-S2B1. A genetic map was constructed based on 167 marker loci, consisting of 160 microsatellite loci, three HMW glutenin subunit loci: Glu-A1, Glu-B1 and Glu-D1, and four STS-PCR markers. Data for investigated traits were collected from three to four environments in Manitoba, Canada. QTL analyses were performed using composite interval mapping. A total of 50 QTLs were detected, 24 for agronomic traits and 26 for quality-related traits. Many QTLs for correlated traits were mapped in the same genomic regions forming QTL clusters. The largest QTL clusters, consisting of up to nine QTLs, were found on chromosomes 1D and 4D. HMW glutenin subunits at Glu-1 loci had the largest effect on breadmaking quality; however, other genomic regions also contributed genetically to breadmaking quality. QTLs detected in the present study are compared with other QTL analyses in wheat.  相似文献   

15.
A well saturated genomic map is a necessity for a breeding program based on marker assisted selection. To this end, we are developing genomic maps for cowpea (Vigna unguiculata 2N = 22) and mung bean (Vigna radiata 2N = 22) based on restriction fragment length polymorphism (RFLP) markers. Using these maps, we have located major quantitative trait loci (QTLs) for seed weight in both species. Two unlinked genomic regions in cowpea contained QTLs accounting for 52.7% of the variation for seed weight. In mung bean there were four unlinked genomic regions accounting for 49.7% of the variation for seed weight. In both cowpea and mung bean the genomic region with the greatest effect on seed weight spanned the same RFLP markers in the same linkage order. This suggests that the QTLs in this genomic region have remained conserved through evolution. This inference is supported by the observation that a significant interaction (i.e., epistasis) was detected between the QTL(s) in the conserved region and an unlinked RFLP marker locus in both species.  相似文献   

16.
Parental and consensus genetic maps of Vitis vinifera L. (2n = 38) were constructed using a F1 progeny of 139 individuals from a cross between two partially seedless genotypes. The consensus map contained 301 markers [250 amplification fragment length polymorphisms (AFLPs), 44 simple sequence repeats (SSRs), three isozymes, two random amplified polymorphic DNAs (RAPDs), one sequence-characterized amplified region (SCAR), and one phenotypic marker, berry color] mapped onto 20 linkage groups, and covered 1,002 cM. The maternal map consisted of 157 markers covering 767 cM (22 groups). The paternal map consisted of 144 markers covering 816 cM (23 groups). Differences in recombination rates between these maps and another unpublished map are discussed. The major gene for berry color was mapped on both the paternal and consensus maps. Quantitative trait loci (QTLs) for several quantitative subtraits of seedlessness in 3 successive years were searched for, based on parental maps: berry weight, seed number, seed total fresh and dry weights, seed percent dry matter, and seed mean fresh and dry weights. QTLs with large effects (R2 up to 51%) were detected for all traits and years at the same location on one linkage group, with some evidence for the existence of a second linked major QTL for some of them. For these major QTLs, differences in relative parental effects were observed between traits. Three QTLs with small effects (R2 from 6% to 11%) were also found on three other linkage groups, for berry weight and seed number in a single year, and for seed dry matter in 2 different years.  相似文献   

17.
猪重要胴体性状的遗传定位   总被引:1,自引:0,他引:1  
苏玉虹  马宝钰  熊远著 《遗传》2004,26(2):163-166
为了寻找影响猪重要胴体性状主基因在染色体的位置,我们以大白猪和梅山猪为父母本建立了F2资源家系。随机选留81头F2代个体,经屠宰获得猪胴体性状数据。结合家系个体的48个微卫星标记基因型,用线性模型最小二乘法对各胴体性状进行数量性状基因座(QTL)的区间定位。定位结果表明位于猪染色体(SSC)4号的瘦肉率和瘦肉量QTL达到基因组极显著水平;SSC1、2和4上眼肌面积QTL达到染色体显著水平;位于SSC1和4上的眼肌高度QTL与眼肌面积QTL在同一染色体区域;而眼肌宽度QTL位于SSC6;位于SSC7同一标记区间的皮重、皮率、骨重和骨率QTL表现出很好的一致性,均达到染色体显著水平。SSC6和7的体长QTL达到染色体显著水平。 Abstract: To detect quantitative trait loci (QTL) for body composition traits in pigs, a resource family with three-generation was developed by using Large White grand sires and Meishan grand dams. A total of 81 F2 progenies were phenotyped for body composition. All animals were genotyped for microsatellite markers. The main results are as follows:, the strongest linkages at genome-wise level of lean meat percentage and total meat content were detected on SSC1 and 4. QTLs for loin eye area were located on SSC1, 2 and 4, QTLs for loin eye height on SSC 1 and 4, and QTLs for loin eye width on SSC 6. The best positions estimated for QTLs of skin percentage and of skin weight were in the same marker interval. Two QTLs significant at genome-wise level or highly significant at chromosome-wide level for carcass length were located on SSC6 and 7.  相似文献   

18.
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.  相似文献   

19.
The cross between Arabidopsis thaliana and the closely related species Arabidopsis arenosa results in postzygotic hybrid incompatibility, manifested as seed death. Ecotypes of A. thaliana were tested for their ability to produce live seed when crossed to A. arenosa. The identified genetic variation was used to map quantitative trait loci (QTLs) encoded by the A. thaliana genome that affect the frequency of postzygotic lethality and the phenotypes of surviving seeds. Seven QTLs affecting the A. thaliana component of this hybrid incompatibility were identified by crossing a Columbia × C24 recombinant inbred line population to diploid A. arenosa pollen donors. Additional epistatic loci were identified based on their pairwise interaction with one or several of these QTLs. Epistatic interactions were detected for all seven QTLs. The two largest additive QTLs were subjected to fine-mapping, indicating the action of at least two genes in each. The topology of this network reveals a large set of minor-effect loci from the maternal genome controlling hybrid growth and viability at different developmental stages. Our study establishes a framework that will enable the identification and characterization of genes and pathways in A. thaliana responsible for hybrid lethality in the A. thaliana × A. arenosa interspecific cross.  相似文献   

20.
Knowledge of genes responsible for aging and death is a prerequisite for determining the relative contributions of the different evolutionary factors responsible for the limited duration of life. Polymorphism of these genes probably accounts for the variation in lifespan. Previously, quantitative trait loci (QTLs) controlling this variation were mapped with the use of 98 recombinant inbred (RI) lines originating from two parental isogenicDrosophila melanogaster stocks. In each RI line, lifespan was measured for 25 males and 25 females, and alleles were established for 93 marker genes segregating between the parental lines. Significant correlation between marker segregation and lifespan was revealed for several chromosome regions. The lifespan genes had sex-specific effects and late age onset. In the present work, the effects of the QTLs were compared for homozygous and heterozygous flies. In Six out of the eight detected QTLs alleles that decreased lifespan were recessive. Heterosis was observed for a of QTL at 33E–38A. Thus, heterosis might contribute to maintaining variation in lifespan in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号