首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent Studies have demonstrated that glucagon-like peptide-1 (GLP)(7-37) has more potent insulinotropic activity than glucagon. We therefore examined the effect of GLP-1(7-37) on liver metabolism using rat liver perfusion system. Ten nM GLP-1(7-37) did not affect glucose, ketone body and cAMP outputs from the perfused liver. Whereas, the same dose of glucagon stimulated these outputs significantly. When 10 nM GLP-1(7-37) perfused 5 min before the administration of 10 nM glucagon, the above stimulatory effects of glucagon were not affected. These results indicate that truncated GLP-1 has no effect on hepatic glycogenolysis and ketogenesis dissociating from its potent insulinotropic activity.  相似文献   

2.
We studied the effect of the highly purified gut peptide glicentin on the glucose production and cyclic AMP accumulation of isolated rat hepatocytes. Glicentin at 2.10(-7) mol/l had the same effect on glucose production as maximally effective concentrations of glucagon, but did not stimulate cyclic AMP to the same extent; furthermore, glicentin apparently had only 1/100 of the potency of glucagon on glucose production. During incubation with hepatocytes glicentin was degraded to low molecular weight fragments one of which were chromatographically very similar to fragments of glucagon. It is suggested that glicentin exerts its glucagon-like effects on hepatocytes only after degradation to glucagon-like fragments. The results also demonstrate that the coupling between cyclic AMP accumulation and glucose production depends on the nature of the stimulatory peptide.  相似文献   

3.
The role of hypophysis in the regulation mechanism of the secretion of gut glucagon immunoreactivity (gut GI) that was measured using C-terminal specific glucagon antiserum after pancreatectomy, and gut glucagon-like immunoreactivity (gut GLI) that was obtained by subtracting GI from total glucagon-like immunoreactivity (total GLI) which was measured using non-specific glucagon antiserum, was investigated in depancreatized dogs. Plasma glucose, gut GI and gut GLI levels were found to increase in totally depancreatized dogs. The former two showed a significant decrease after hypophysectomy, and were reversed by the hypophysis-transplantation, while gut GLI was not affected either by hypophysectomy or hypophysis-transplantation. Intramuscular injections of human growth hormone (HGH) or adrenocorticotropic hormone-Z (ACTH-Z) to depancreatized-hypophysectomized dogs had no effect on plasma glucose level or gut GI. It is concluded that hypophysis may promote the secretion of gut GI after pancreatectomy, but not of gut GLI. Gut GI seems to regulate plasma glucose level after pancreatectomy. However, the precise regulation mechanism of gut GI by the hypophysial hormone after pancreatectomy is not clarified yet.  相似文献   

4.
The pharmacokinetics of purified synthetic oxyntomodulin were studied after infusing it into euglycaemic pigs at two rates. The elimination of the peptide from plasma was characterized by two components, a fast one (t1/2 7.2 +/- 0.6 min) and a slow one (t1/2 20.4 +/- 3.8 min) (mean +/- S.E.M., n = 7). The metabolic clearance rate was independent of infusion rate (6.96 +/- 0.99 vs 7.44 +/- 0.98 ml/kg . min (mean +/- S.E.M., n = 7). The synthetic peptide bound to pig hepatic glucagon receptors, but with approximately 2% of the affinity of glucagon, and showed insulinotropic and somatostatinotropic effects when infused into isolated perfused pig pancreases at concentrations higher than 10(-10) M. A dose-dependent increase was also shown for pancreatic glucagon output. A naturally occurring peptide, identified as oxyntomodulin by gel filtration and HPLC, was released into the circulation from the pig lower small intestinal mucosa upon intraluminal administration of glucose, and represented 25 +/- 3.8% of the secreted glucagon-like immunoreactivity. 11 +/- 2.3% of the secreted glucagon-like immunoreactivity was indistinguishable from glucagon itself upon gel filtration; thus at least 36% of the glucagon-like immunoreactivity secreted from the intestinal mucosa is already in an active form.  相似文献   

5.
The intestines of obese hyperglycaemic (ob/ob) mice contain greatly increased amounts of glucagon-like immunoreactive peptides. To investigate their role in the increased activity of the entero-insular axis of these mice, the insulin-releasing effect of glucagon-like peptide-1 (GLP-1) was examined in 24 hour fasted 12-15 weeks old ob/ob mice under conditions of basal and elevated glycaemia. Compared with glucagon (100 micrograms/kg ip), which produce an approximately 3-fold increase in basal plasma glucose and insulin concentrations, GLP-1 (100 micrograms/kg ip) produce a very small (less than 1 fold) increase in plasma insulin, with no significant change in plasma glucose. The insulin-releasing effect of glucagon, but not GLP-1 was increased by administration in combination with glucose (2 g/kg ip). The results indicate that GLP-1, which exhibits considerable sequence homology with glucagon, exerts only a weak insulin-releasing effect without a significant hyperglycaemic effect in ob/ob mice. Thus GLP-1 is unlikely to be an important endocrine component of the two over-active entero-insular axis in ob/ob mice.  相似文献   

6.
Plasma insulin, pancreatic glucagon and immunoreactive glucagon-like polypeptide of intestinal origin (enteroglucagon) have been measured in 10 patients with chronic pancreatitis and 5 normal subjects. Basal levels and changes following oral glucose (50 g) and an intravenous infusion of arginine (25 g in 30 min) have been studied. In patients with chronic pancreatitis the plasma insulin response to oral glucose and intravenous arginine was reduced. Basal pancreatic glucagon was increased in the patients and increased further with oral glucose. During an arginine infusion the pancreatic glucagon showed a brisk early increase greater than that seen in the normal subjects. Basal enteroglucagon levels were significantly increased in chronic pancreatitis but response to orla glucose and arginine infusion were little different from those seen in the normal subjects.  相似文献   

7.
The effects of glucose and GIP on glucagon secretion were studied in perifused microdissected murine pancreatic islets. Glucagon levels were determined in effluent samples collected at 1-min intervals by radioimmunoassay using the glucagon-specific antibody, 30 K. There was no significant difference in the total amount (7740 +/- 212 pg vs 8630 +/- 36 pg, n = 10) of glucagon secreted over a 20 min period when the glucose concentration was alternately shifted between 5.5 mM and 11.1 mM, respectively. However, 22.2 mM glucose profoundly suppressed glucagon secretion. The suppressive effect of high glucose on glucagon release was partially, yet significantly, reversed by the presence of GIP, as glucagon secretion increased from a non-detectable level at 22.2 mM glucose alone to 10,175 +/- 145 pg, n = 10 (P less than 0.01). The glucagonotropic effect of GIP was dose-dependent in the range of 2 x 10(-9) - 2 x 10(-7) M, at 11.1 mM glucose. Our data show that GIP is able to substantially reverse the suppressive effect of a high glucose load on glucagon secretion.  相似文献   

8.
The effect of a specific alpha 2-adrenergic antagonist 2-[2-(4,5-dihydro-1.H-imidazol-2-yl)-1-phenyl-ethyl] pyridine dihydrochloride sesquihydrate (DG5128), on the glucose output by epinephrine and/or glucagon was studied using the perfused rat liver. The administration of DG5128 alone did not affect the glucose output. However, DG5128 produced a significant inhibition of the increased glucose output when induced by 10(-6) M epinephrine alone or 10(-6) M epinephrine plus 1.4 x 10(-10) M glucagon. There were no significant changes of the glucose output by 1.4 x 10(-10) M or 7.0 x 10(-11) M glucagon alone. On the other hand, addition of 1 mU/ml insulin to the perfusate suppressed the 7.0 x 10(-11) M glucagon-induced glucose output, but failed to decrease the 1.4 x 10(-10) M glucagon effect. DG5128 suppressed further the glucagon (7.0 x 10(-11) M)-induced increase of glucose output in the presence of insulin. These results suggest that DG5128 produces a hypoglycemic effect partly through an inhibition of the increased hepatic glucose output elicited by epinephrine and glucagon.  相似文献   

9.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

10.
Primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion procedure and maintained as a monolayer in a serum-free culture medium were used to study glucoeogenesis and the role that the glucocorticoids play in the control of this pathway. These cells carried out gluconeogenesis from three-carbon precursors (alanine and lactate) in response to glucagon and dexamethasone added alone or in combination. Maximum glucose production was observed with cells pretreated for several hours with dexamethasone and glucagon prior to addition of substrate and glucagon (8- to 12-fold increase over basal glucose production). Half-maximum stimulation of gluconeogenesis was seen with 3.6 × 10?10 M glucagon and 3.6 × 10?8 M dexamethasone. Maximum stimulation was oberved with 10?7 M glucagon and 10?6 M dexamethasone. The length of time of dexamethasone pretreatment was found to be important in demonstrating the effect of glucocorticoids on glucagon-stimulated gluconeogenesis. Treeatment of cells with dexamethasone for 2 hours did not result in an increase in glucose production over identical experimental conditions in the absence of dexamethasone, wherease pretreatment for 5 hours (1.2-fold increase) or 15 hours (1.7-fold increase) did result in an increase in glucose production. The results establish that the adult rat liver parenchymal cells in primary culture are a valid model system to study hepatic gluconeogenesis. In addition, we have established directly that the glucocorticoids amplify the glucagon stimulation of gluconeogenesis.  相似文献   

11.
A glucagon-like substance named biliary IRG2000 whose molecular weight is approximately 2,000 was isolated by gel filtration from rabbit bile. This substance showed a strong crossreactivity as equivalent to 25.7 +/- 5.1 ng/ml of porcine glucagon in RIA with antiserum 30K specificity. Biliary IRG2000 brought about a significant increase and delayed the response of blood glucose level in coexistence with porcine glucagon, though it has no appreciable effect on the glucose level when administered singly to the mouse intraperitoneally. The response with the coexistence of these materials was far greater than when porcine glucagon was given alone. In Mortimore's type rat liver perfusion, a significant rise in glucose concentration in effluent was also observed when a mixture of biliary IRG2000 and porcine glucagon was perfused. The rate of 125I-glucagon degradation was found delayed in the presence of biliary IRG2000 when examined in the rat. Thus the increase and delayed response of glucose level in coexistence of porcine glucagon with biliary IRG2000 may be explained by a suppressive effect of glucagon degradation due to biliary IRG2000.  相似文献   

12.
The ability of the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp cAMPS) to inhibit glucagon-induced glycogenolysis was studied in hepatocytes isolated from fed rats. Preincubation of the cells for 20 min with progressively higher concentrations of Rp cAMPS followed by a 1 X 10(-9) M glucagon challenge resulted in a 50% inhibition of glucose production over a 30-min period at 2-3 X 10(-6) M Rp cAMPS. A maximal inhibition of 50-74% was achieved, the actual value depending upon the length of preincubation with Rp cAMPS. The inhibitory effect did not increase when the concentration of Rp cAMPS was increased from 3 X 10(-6) to 3 X 10(-4) M. Addition of 1 X 10(-5) M Rp cAMPS to the cells followed by 10(-11) to 10(-6) M glucagon shifted the glucagon concentration required for half-maximal glucose production measured at 10 min to 6-fold higher glucagon concentrations and the concentration of glucagon required for apparent maximal glucose production measured at 10 min to greater than 10-fold higher glucagon concentrations. The cAMP-dependent protein kinase activation curve was similarly shifted to higher concentrations of glucagon. These data show that Rp cAMPS acts as a cAMP antagonist capable of opposing the glucagon-induced activation of cAMP-dependent protein kinase and the concomitant activation of the glycogenolytic cascade.  相似文献   

13.
The effects of glucagon and the glucagon-like peptide GLP-1(7-37) were compared in rat liver hepatocytes. Glucagon elevated cAMP, elevated intracellular free calcium ([Ca2+]i), activated phosphorylase and stimulated gluconeogenesis, whereas GLP-1(7-37) was without effect on any of these parameters. GLP-1(7-37) did not block any of the actions of glucagon. The glucagon analog, des His1[Glu9] glucagon amide, was a partial agonist in liver, but also was an effective antagonist of glucagon actions in liver but not those of GLP-1(7-37) in islet B cells. It was concluded that in the rat, GLP-1(7-37) is a potent insulin secretagogue [1] but is without effect on liver.  相似文献   

14.
The effect of phenformin (DBI) on the plasma intestinal glucagon-like immunoreactivity (GLI) and pancreatic glucagon (IRG) responses to oral and intravenous glucose loads were studied in 26 gastrectomized subjects, using a cross-reacting and an IRG-specific anti-serum. The drug produced no significant changes in fasting GLI and IRG levels. Thirty minutes after oral glucose alone, the total GLI level rose to a peak of 1.55 +/- 0.17 ng/ml in the untreated subjects and to a maximum level of 1.67 +/- 0.18 ng/ml in the DBI-pretreated subjects. However, the mean GLI levels obtained 120 and 180 min after oral glucose were significantly higher after treatment with DBI. The blood sugar and IRI responses to oral glucose were lowered significantly by DBI pretreatment. DBI did not alter the glucose, IRI, IRG and GLI response to intravenous glucose. These results suggest that the release of intestinal GLI is not related to the intestinal absorption of glucose.  相似文献   

15.
16.
Excessive secretion of glucagon, a functional insulin antagonist, significantly contributes to hyperglycemia in type 1 and type 2 diabetes. Accordingly, immunoneutralization of glucagon or genetic deletion of the glucagon receptor improved glucose homeostasis in animal models of diabetes. Despite this strong evidence, agents that selectively interfere with endogenous glucagon have not been implemented in clinical practice yet. We report the discovery of mirror-image DNA-aptamers (Spiegelmer®) that bind and inhibit glucagon. The affinity of the best binding DNA oligonucleotide was remarkably increased (>25-fold) by the introduction of oxygen atoms at selected 2′-positions through deoxyribo- to ribonucleotide exchanges resulting in a mixed DNA/RNA-Spiegelmer (NOX-G15) that binds glucagon with a Kd of 3 nm. NOX-G15 shows no cross-reactivity with related peptides such as glucagon-like peptide-1, glucagon-like peptide-2, gastric-inhibitory peptide, and prepro-vasoactive intestinal peptide. In vitro, NOX-G15 inhibits glucagon-stimulated cAMP production in CHO cells overexpressing the human glucagon receptor with an IC50 of 3.4 nm. A single injection of NOX-G15 ameliorated glucose excursions in intraperitoneal glucose tolerance tests in mice with streptozotocin-induced (type 1) diabetes and in a non-genetic mouse model of type 2 diabetes. In conclusion, the data suggest NOX-G15 as a therapeutic candidate with the potential to acutely attenuate hyperglycemia in type 1 and type 2 diabetes.  相似文献   

17.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

18.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

19.
Insulin-releasing activity of porcine gastrointestinal glucagon-like immunoreactive materials purified by affinity chromatography was examined in the perfused rat pancreas. When glucose concentration of the perfusate was raised from 60 to 100 mg/dl, augmented insulin release was observed. The mean incremental area of immunoreactive insulin (sigma delta IRI) during the first 10 min thus observed was 19.07 +/- 3.76 ng/10 min. Pancreatic glucagon and the extract from the gastric fundus showed the enhancement of insulin release in this system when they were added to the perfusate at the rate of 100 ng/min for 5 min; delta IRI were 41.92 +/- 8.47 and 71.70 +/- 18.09 ng/10 min, respectively, which were significantly higher than that of 100 mg/dl of glucose alone. However, no significant difference in the insulinogenic activity was noticed between the extracts from the small intestine and the control. These results suggest that the extract from the gastric fundus has insulinogenic activity similar to that of pancreatic glucagon.  相似文献   

20.
Type 2 diabetes mellitus (T2DM) is associated with reduced suppression of glucagon during oral glucose tolerance test (OGTT), whereas isoglycemic intravenous glucose infusion (IIGI) results in normal glucagon suppression in these patients. We examined the role of the intestinal hormones glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 (GLP-2) in this discrepancy. Glucagon responses were measured during a 3-h 50-g OGTT (day A) and an IIGI (day B) in 10 patients with T2DM [age (mean ± SE), 51 ± 3 yr; body mass index, 33 ± 2 kg/m(2); HbA(1c), 6.5 ± 0.2%]. During four additional IIGIs, GIP (day C), GLP-1 (day D), GLP-2 (day E) and a combination of the three (day F) were infused intravenously. Isoglycemia during all six study days was obtained. As expected, no suppression of glucagon occurred during the initial phase of the OGTT, whereas significantly (P < 0.05) lower plasma levels of glucagon during the first 30 min of the IIGI (day B) were observed. The glucagon response during the IIGI + GIP + GLP-1 + GLP-2 infusion (day F) equaled the inappropriate glucagon response to OGTT (P = not significant). The separate GIP infusion (day C) elicited significant hypersecretion of glucagon, whereas GLP-1 infusion (day D) resulted in enhancement of glucagon suppression during IIGI. IIGI + GLP-2 infusion (day E) resulted in a glucagon response in the midrange between the glucagon responses to OGTT and IIGI. Our results indicate that the intestinal hormones, GIP, GLP-1, and GLP-2, may play a role in the inappropriate glucagon response to orally ingested glucose in T2DM with, especially, GIP, acting to increase glucagon secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号