首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An initial study was conducted to establish the presence in plasma of diurnal rhythms of immunoreactive porcine adrenocorticotropic hormone (pACTH) and cortisol in castrated male pigs (barrows). Fourteen barrows with jugular catheters were bled at 6-hr intervals for 24 hr. Significant changes in plasma pACTH were evident with peak levels (61 +/- 6 pg/ml) at 0100-0700 hr and a trough (38 +/- 4 pg/ml) at 1900 hr. Changes (P less than 0.05) in plasma cortisol were also present in barrows with a peak (44 +/- 6 ng/ml) at 0700 hr and a trough (21 +/- 5 ng/ml) at 1900 hr. Plasma norepinephrine and epinephrine were measured at the same time intervals and did not differ among hours. In these unstressed pigs the ratio cortisol/log10pACTH at 0700 hr (25.3 +/- 3.0) was greater than the ratio at 1900 hr (12.9 +/- 2.7). Sequential blood samples were subsequently taken on four of the barrows 12 and 26 days later. Plasma pACTH was variable among pigs and did not differ among hours. Plasma cortisol on both dates was greater (P less than 0.05) in the morning (0100 or 0700 hr) than at 1900 hr. The ratio cortisol/log10pACTH at 0700 hr was repeatedly greater than at 1900 hr. A second study was conducted to determine whether plasma pACTH and cortisol responses to mild (32 degrees C for 2 hr) or strong (20-min restraint) stressors were dependent on the time of day of stressor application (0800 hr, AM; 1600 hr, PM). Response-associated parameters (maximum concentration, maximum incremental concentration, and integrated response) for pACTH and cortisol did not differ between AM and PM. However, a qualitative difference existed between the AM and PM plasma pACTH responses to restraint +32 degrees C wherein the AM response consisted of a single prolonged surge, and the PM response of an initial major peak followed by a second significant minor peak. A suggested explanation is that the initial 20-min restraint stressor potentiated the hypothalamic-hypophyseal response to 32 degrees C. These studies are the first direct measurements which suggest the presence of diurnal changes in plasma ACTH and cortisol in barrows. The studies also indicate for barrows an absence of diurnal changes in plasma epinephrine and norepinephrine. The responsiveness of the pituitary-adrenocortical axis to stressors did not exhibit quantitative diurnal changes at the time periods measured. However, it is hypothesized that the repeatable AM-PM difference in the ratio cortisol/log10ACTH reflects a diurnal change in adrenal responsiveness to ACTH in unstressed pigs.  相似文献   

2.
Radioimmunoassayable (RIA) plasma growth hormone (GH) and prolactin (PRL) levels were determined at 3 hr intervals during a controlled 24-hr light-dark cycle in 10-day-old male and female rats; parallel measurements were made of brain monoamines (MA's), dopamine (DA), norepinephrine (NE) and serotonin (5-HT) concentration. Plasma GH and PRL and brain MA levels found in infant rats were compared to the same determinations made during the 24-hr cycle in 50-day-old male rats. GH levels were rather uniform and did not show circadian periodicity in the plasma of infant rats, while PRL levels showed a diurnal surge in the late afternoon hr (1800). In adult rats, GH levels exhibited wide fluctuations during the 24-hr cycle and no circadian periodicity, while PRL levels showed one diurnal (1500–1800) and one nocturnal (2400) surge. A pulsatile GH secretion was found in adult rats sampled at 15 min intervals over a period of 2 hr, which seemed to be lacking in infant rats. In the brain of infant rats, DA and NE levels exhibited circadian patterns which resembled the ones present in the brain of adult rats, whereas no circadian variations were present in 5-HT levels.  相似文献   

3.
Autoradiographic histochemistry was employed to examine changes in the binding of 125I-labeled prolactin (Prl) to ovaries from proestrous hamsters before (at 1200 h), during (at 1600 h), and after (at 2000 h) the preovulatory gonadotropin surge. In untreated control hamsters, there was a marked and progressive loss of Prl binding, first in the interstitial cells and follicular thecae by 1600 h, and then in the granulosa cells of the preovulatory follicles by 2000 h. When proestrous hamsters were treated with ergocryptine to significantly lower serum Prl, or injected with exogenous Prl, Prl binding to their ovaries did not differ from controls, suggesting that decreased Prl binding was due to neither increased occupancy of binding sites by endogenous Prl nor down regulation of Prl receptors by Prl itself. Conversely, when proestrous hamsters were treated with phenobarbital to block the luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surge, the loss of Prl binding sites in the ovaries was prevented, suggesting that the LH/FSH surge might initiate a down regulation of Prl receptors in the ovary. Such a down regulation of Prl receptors may serve as a mechanism by which the ability of Prl to affect periovulatory events in the ovary might be regulated.  相似文献   

4.
To characterize plasma estradiol, LH and FSH patterns of secretion during the bitch estrous cycle, blood samples were obtained daily from 15 days before until 135 days after the LH surge in 10 pregnant and 10 nonpregnant beagle bitches. After an initial increase between days 15 and 10 and an expected proestrous peak, estradiol concentrations increased again from days 9-12 (corresponding to cytological metestrus) from basal values observed around day 9 after the LH surge, and remained significantly elevated throughout the luteal phase both in pregnant and nonpregnant animals. Concomitantly with the end of the luteal phase, plasma concentrations of estradiol returned to basal values in both groups. During the mid- to late-luteal phase, mean basal LH secretion was significantly elevated throughout in the pregnant relative to the nonpregnant animals. However, in nonpregnant animals, pulsatility was increased and peaks of higher amplitude were observed. The plasma FSH profiles, determined by a specific homologous RIA, differed significantly between pregnant and nonpregnant bitches during the last two-thirds of the luteal phase with a mean FSH level more elevated during pregnancy. The FSH level then decreased around parturition and low concentrations during lactation period were observed. The FSH concentrations remained steady in nonpregnant luteal phases from early luteal phase through mid-anestrus. The differences in pregnant and nonpregnant LH and FSH concentrations suggest pregnancy differences in regulation of the corpus luteum. Finally, the elevated estradiol concentrations observed during the luteal phase of both pregnant and nonpregnant animals suggest that an ovarian production of estrogens may be involved in overall corpus luteum regulation in dogs as in other species.  相似文献   

5.
To determine whether CRH is required for the evening rise in plasma ACTH, rats were injected at 0800 hr with CRH antiserum (anti-CRH) or normal rabbit serum (NRS). Blood samples were taken through venous catheters at 0800 hr before treatment and at 1300, 1700, and 2100 hr. Plasma was assayed for immunoreactive ACTH and corticosterone. There was no significant difference in pretreatment values between the two groups. Immunoneutralization of CRH abolished the rise in plasma ACTH seen at 1700 hr in the NRS group but had little effect on earlier levels. The diurnal elevation in plasma corticosterone continued after anti-CRH treatment, but peak levels occurred earlier. Plasma ACTH and corticosterone were significantly correlated at the time of the diurnal surge, but not at 0800 hr or 1300 hr in the NRS controls or at any time point in the anti-CRH group. These results suggest that CRH is required for the diurnal surge of plasma ACTH. They also confirm previous observations by others that the adrenal cortex does not require active CRH or a diurnal surge of ACTH in order to exhibit a significant diurnal increase in secretion of corticosterone, and that factors other than CRH may be relatively more active than CRH in regulation of ACTH secretion during the time of circadian inactivity.  相似文献   

6.
Two separate experiments in which blood was sampled at 2-h intervals from turkeys hens failed to show a significant change in plasma prolactin (Prl) concentrations in relation to the preovulatory surge of luteinizing hormone (LH) for the first (C1) ovulation of a sequence. Intravenous injection of 125 IU of ovine Prl (NIH-P-S10) or of 1 or 2 ml of antiserum to turkey Prl at varying intervals before C1 ovulation had no effect on the timing or incidence of C1 ovulation. However, injection of Prl before C1 ovulation tended to inhibit ovulation of the second (C2) egg of the sequence, while injection of antiserum to Prl before C1 ovulation tended to either advance or inhibit C2 ovulation. Possibly, the effects of Prl and Prl antiserum on C2 ovulation reflect interference with maturation of the C2 ovarian follicle rather than interference with neuroendocrine processes that regulate the timing of the preovulatory surge of LH. The data for C1 ovulation argue against a change in circulating levels of Prl as a factor in the timing of the preovulatory surge of LH.  相似文献   

7.
The onset of maternal behavior in pregnant hamsters was measured by presenting foster pups at 0900 and 2100 hr on Day 15 and at 0300, 0500, and 0700 hr on Day 16 and then at hourly intervals until parturition began. The occurrence of parturition was determined at each maternal test and at 0.5 hr intervals beginning at 0700 hr on Day 16. Nulliparous and primiparous animals became maternal at approximately the same time on Day 16, 2 and 6 hr prepartum, respectively, demonstrating that parturition is not essential for maternal behavior. The second experiment showed that nulliparous females injected with either 1 μg or 10 μgm estradiol-17β (E2), 0.1 mgm progesterone (P), 10 μgm E2 plus 0.1 mgm P, or oil at 1200 hr on Day 15 became maternal at the same time of day (0800–1000 hr) while parturition was delayed 8 hr in females receiving P. The results suggest a dissociation between the regulation of parturition and maternal care and are compared to previous research into the hormonal basis of maternal behavior in rats.  相似文献   

8.
The circadian variations in plasma progesterone (P) and LH concentrations were investigated in six women, aged 23-40 years. All were studied in the mid-luteal phase (7 +/- 2 days after LH mid-cycle surge). Experiments were conducted in autumn and in spring. Blood samples were obtained every 15 min for 24 hr. Plasma P and LH concentrations were measured by RIA. Each subject's time-series was analysed using three methods; visual inspection (chronogram), spectral analysis to estimate component periods of rhythms (tau) and cosinor analysis to quantify the rhythms parameters. Marked temporal variations in plasma P concentration were observed in each subject. The maximal variations over a 24-hr period, ranged between 13-58.5 mmol/l. Differences related to sampling time were statistically validated by ANOVA (p less than 0.00001). Significant harmonic periods were detected by spectral analysis but differed among subjects. In all subjects but one, a circadian rhythm was detected. The acrophase location was similar (about 0700 hr) in the four subjects studied in autumn, but ranged from 1940 to 0320 hr in those studied in spring. An ultradian rhythm with tau = 8 hr was also validated in six time-series with similar acrophases (about 0200, 1000, and 1800 hr). Cosinor analysis of pooled data revealed that the 24-hr, 12-hr, and 8-hr rhythms were statistically significant (p = 0.001) in autumn. algebraic sum of these three cosine functions yielded a circadian waveform with peak-times occurring near 0300 and 1130 hr and a trough-time about 2200 hr. In spring, the circadian pattern appeared quite different, and peak-times were found near 0700 and 2000 hr, and trough-times near 0300 and 1500 hr. Furthermore, the 24-hr mean of P was higher in autumn (28.9 +/- 0.4 nmol/l) than in spring (17.2 +/- 0.4 nmol/l), p from ANOVA less than 0.00001. The evidence for a similar circadian LH pattern is not as strong. Seasonal, circadian and ultradian rhythms characterize the physiologic time structure of plasma P concentration in mid-luteal phase.  相似文献   

9.
We investigated with eight healthy females if 8 hr diurnal (0700 to 1500 h) bright rather than dim light (5,000 vs. 80 lx) influenced urine volume. Environmental illuminance was made identical at all other times besides 07:00 to 15:00 h. The participants spent time at strictly regulated schedules in a bioclimatic chamber (26 degrees C, relative humidity 60%) for 57 h. Blood was drawn (2 ml) just before lunch in order to calculate Creatinine clearance (Ccr). Urine volume was significantly higher during wakefulness and the 8-h sleep period with bright rather than dim light. Ccr was significantly higher after bright light. The results were discussed in terms of suppression of the sympathetic nerve system under the influence of diurnal bright light exposure. We also discussed these in terms of physiological polymorphisms.  相似文献   

10.
Regularly cycling female baboons were selected and maintained under a diurnal light schedule from 0500 to 1900 hr (CST). Beginning three days prior to the expected LH peak, blood was collected daily at 0800 and 1600 hr for 6 days in 5 baboons under light sedation for radioimmunoassay of plasma LH and estrogen. The plasma level of LH increased linearly and reached a peak in the afternoon of the second day. The peak in plasma estrogen appeared prior to the LH peak. In order to examine the critical period of LH surge in baboons, nembutal was injected daily at 1300 hr beginning a few days prior to expected LH relase. Initial dose of nembutal was 35 mg/kg body weight, but a supplementary dose was later required for a full 5 hours of anesthesia. Blood was collected at 1600 hr from 4 baboons during nembutal injections and after cessation of nembutal injections for radioimmunoassay of plasma LH and estrogen. It was found that nembutal injections suppressed LH release in 2 baboons, and caused a delay of LH release in 2 baboons. However, the plasma level of estrogen declined immediately after initiation of nembutal injection and remained lower. The evidence illustrates the nature of the neural components of LH release which became effective in the afternoon during the ovulatory phase. In addition, a linear increase in plasma level of LH, which is due to accumulation of circulating LH, is necessary for induction of ovulation in baboons.  相似文献   

11.
Three regimens of sustained-release theophylline (SRT), Theostat were administered to 12 male patients with chronic obstructive pulmonary disease in a randomized cross-over trial. Each 7-day treatment consisted of: treatment A--8 mg/kg at 0700 hr and 4 mg/kg at 1900 hr, treatment B--6 mg/kg at 0700 hr and 6 mg/kg at 1900 hr, treatment C--4 mg/kg at 0700 hr and 8 mg/kg at 1900 hr. Peak expiratory flow (PEF) was recorded each day at 0700, 1100, 1500, 1900 and 2300 hr and theophylline plasma levels were determined on the 7th day of each treatment sequence. Cosinor analysis of the data revealed significant circadian rhythms in PEF for each treatment: the mesor (24-hr average) was significantly higher with C and acrophases (phi, peak time of PEF rhythm) were located at 1426 hr for A and 1425 hr for C; a shift of the acrophase to an earlier timing was detected for B (phi = 0958 hr. These findings suggest that an unequal, twice-daily SRT dosing with the greater amount of drug at night may be beneficial in the treatment of COPD.  相似文献   

12.
To clarify the mode of action of phenoxybenzamine, an alpha adrenergic blocking agent, its effects upon plasma LH levels in ovariectomized rats and upon the ovulatory LH surge expected between 1400 and 1600, the critical period, on the day of proestrus in normal rats were studied. A single injection of phenoxybenzamine, 20 mg/kg, given at 1300 on the day of proestrus bokced ovulation (1 out of 7 ovulating), while plasma LH did not differ from controls between 1500 and 1600. An additional injection of 20 iu HCG at 1500 prevented the ovulation block (83% ovulating). A single phenoxybenzamine injection at 1700 failed to prevent ovulation (5 out of 7 ovulating). The beta adrenergic blocking agents, propanolol and MJ 1999, did not affect ovulation. Treatment with phenoxybenzamine for 2 days, 20mg/kg/day, for 8 days, 10mg/kg/day, were did not prevent the rise causing a reduction in blood flow through the ovary rather than acting as a neurogenic stimulus in the hypothalamus.  相似文献   

13.
The interplay between the fetus and mother may play a key role in the regulation of primate pregnancy and parturition. This study was designed to test the hypothesis that fetectomy alters maternal pituitary-adrenal function. Between 117 and 122 days of gestation (term = 167 days), six rhesus macaques underwent surgery for catheter implantation. At surgery the fetuses were removed while the membranes and placenta were left in situ. Six additional intact catheterized pregnant animals served as controls. Animals were maintained under a 12L:12D cycle with lights-on from 0700 to 1900 h. Beginning at least 1 wk after surgery, maternal arterial blood samples were collected at 3-h intervals for 24 h for hormone and catecholamine analysis. This sampling protocol was repeated at weekly intervals until cesarean delivery at 151-157 days of gestation. Following fetectomy, plasma ACTH, dehydroepiandrosterone sulfate (DHEAS), and cortisol levels were significantly lower (36%, 35%, and 44%, respectively) compared with control animals (P;lt 0.05). Despite a significant reduction in overall levels, the rhythm in maternal plasma cortisol was maintained following fetectomy. Plasma dopamine and norepinephrine were also depressed (P;lt 0.05), whereas epinephrine remained unaffected. Our data clearly demonstrate the role of the fetus in the regulation of the maternal pituitary-adrenal axis during gestation. This interaction plays a significant role in the regulation of maternal endocrine function that may influence the initiation of labor.  相似文献   

14.
Timing of ovulation and changes in plasma progesterone, luteinizing hormone (LH), and prolactin (PRL) during periovulatory stages were determined in Holtzman rats exhibiting regular 4- or 5-day cycles under a daily artificial illumination from 0500 to 1900 h. The 5-day cycling rats ovulated between 0130 and 0930 h on estrus, whereas some of the 4-day cycling animals ovulated as early as about 0130 h and others as late as 1130 h on estrus. Onset time of preovulatory LH and progesterone surges was about 1500 h on proestrus in both the 4- and the 5-day cycling rats. Peak levels of plasma LH and progesterone were measured at 1700 to 1900 h on proestrus, while the first rises and peak values of plasma PRL were evident a few hours earlier than those of plasma LH in the rats with two cycle lengths. Plasma LH levels at 1900 h on proestrus as well as plasma progesterone levels at 1600 and 2300 h on proestrus and at 0130 and 0330 h on estrus were significantly lower in the 5-day cycling rats than in the 4-day cycling animals (p less than 0.05). In contrast, PRL levels from 1500 through 2300 h on proestrus remained consistently higher in 5-day cycling rats than in 4-day cycling rats, and significant differences in PRL levels between these rats were apparent at 1500, 1600, and 2100 h (p less than 0.05-0.01). Thus, these results demonstrate that the 5-day cycling rats exhibit the attenuated magnitude of LH surge accompanied by the augmented preovulatory PRL release, and that plasma progesterone levels reflect the magnitude of LH surge. A tentative working hypothesis concerning the etiology of the 5-day cycle has been proposed.  相似文献   

15.
Three regimens of sustained-release theophylline (SRT), Theostat® were administered to 12 male patients with chronic obstructive pulmonary disease in a randomized cross-over trial. Each 7-day treatment consisted of

treatment A—8 mg/kg at 0700 hr and 4 mg/kg at 1900 hr

treatment B—6 mg/kg at 0700 hr and 6 mg/kg at 1900 hr

treatment C—4 mg/kg at 0700 hr and 8 mg/kg at 1900 hr.

Peak expiratory flow (PEF) was recorded each day at 0700, 1100, 1500, 1900 and 2300 hr and theophylline plasma levels were determined on the 7th day of each treatment sequence. Cosinor analysis of the data revealed significant circadian rhythms in PEF for each treatment: the mesor (24-hr average) was significantly higher with C and acrophases (Φ, peak time of PEF rhythm) were located at 1426 hr for A and 1425 hr for C; a shift of the acrophase to an earlier timing was detected for B (Φ = 0958 hr. These findings suggest that an unequal, twice-daily SRT dosing with the greater amount of drug at night may be beneficial in the treatment of COPD.  相似文献   

16.
Measurements of growth, plasma progesterone and testosterone levels, and copulatory behaviour were obtained from captive marmosets from birth until 600-800 days of age. Body weight and knee-to-heel length were similar for both sexes. Males exhibited a neonatal testosterone surge from 15-100 days and testosterone levels began to rise again, coincident with the growth of the testis, at about 250 days. The males were copulating by 400-500 days of age. Paired females were apparently ovulating and able to conceive from about 400 days. In peer groups, only the dominant female became pregnant, because subordinate females failed to ovulate.  相似文献   

17.
A rise in plasma testosterone (T) levels occurs in male rats during the first 2 hr after birth which is of importance for the process of sexual differentiation. To study the influence of environmental factors on the postnatal T surge and sexual development, newborn male rats were subjected to various treatments immediately after cesarean delivery including cooling, ether anesthesia, and mother-infant separation. In adulthood, the animals were observed for masculine and feminine sexual behavior. Males anesthetized at 0 hr showed elevated levels of feminine sexual behavior and impaired masculine sexual behavior. Pups subjected to cooling or mother-infant separation showed slightly prolonged intromission latencies, but otherwise normal levels of feminine sexual behavior. Significantly elevated plasma T levels were found in intact pups 2 hr after birth but not in pups subjected to cooling or ether anesthesia. Significantly higher levels of T were observed in pups subjected to cooling 4 hr after birth, suggesting a delay of the T surge. The most pronounced impairing effects were seen in the defeminization process, but the masculinization process also is affected by ether anesthesia. It was concluded that ether anesthesia immediately after birth may permanently interfere with the sexual development by suppressing the neonatal T surge.  相似文献   

18.
Polyvinyl catheters were placed into the right and left utero-ovarian veins and saphenous vein and artery of three control (C) and four estradiol valerate (EV) treated gilts on Day 9 after onset of estrus. The EV treated gilts received 5mg EV/day on Days 11 through 15 after onset of estrus. On Days 12 through 17 utero-ovarian vein blood samples were collected at 15 min intervals from 0700 to 1000 hr and 1900 to 2200 hr and single samples were taken at 1100 and 2300 hr. Peripheral blood samples (saphenous vein or artery) were taken at 0700, 1100, 1900 and 2300 hr from Day 12 until the control gilts returned to estrus or until Day 25 for EV treated gilts and used to measure plasma steroid hormone concentrations. Utero-ovarian vein prostaglandin F (gf) concentrations (ng/ml, n-1,177) were measured by RIA. Status (control vs EV treated gilts) by day interactions were detected (P=.10). Curvilinear day trends were detected for plasma PGF concentrations in control (P less than .01) but not EV treated gilts. PGF concentrations (X +/- S.D.) for control and EV treated gilts were 1.20 +/- 2.08 and .26 +/- .84 ng/ml, respectively. PGF peaks (concentrations greater than X + 2 S.D.) occurred with greater frequency in control gilts (X2 =4.87; P less than .05). The interestrus interval (X +/- S.E.) for control and treated gilts was 19.0 +/- .6 and 146.5 +/- 74.8 days, respectively. Data indicate tht t estradiol valerate may exert its luteotrophic effect by preventing PGF release from the uterus.  相似文献   

19.
Experiments were performed to determine whether the restraint stress-induced decrease of the nocturnal prolactin (PRL) surge affected the length of pseudopregnancy (PSP) and/or the outcome of pregnancy in rats. Vaginal cycles were monitored daily and animals were electro-mechanically cervically stimulated on the morning of metestrus to induce PSP. Animals were restraint stressed by tying the hind legs together with plastic coated bell wire beginning on day 1 of PSP from 0100-0700h with reapplication of stress at 0400h for 6-9 days and then blood sampled for PRL and progesterone plasma levels. Restraint stress significantly decreased plasma PRL (P less than 0.001) and progesterone (P less than 0.05) levels. The length of PSP was significantly decreased (P less than 0.01) for restraint animals and for control animals that were blood sampled compared to control animals that were not sampled. In the pregnancy experiment, animals were mated upon arrival into the laboratory and assigned to one of four groups. For the restraint group, stress was initiated on day 1 of pregnancy as indicated by the presence of sperm in the vaginal lavage. Animals were stressed for 6-9 days for 6 hours during the nocturnal PRL surge as described above. One control group had no treatment; a second control group was sampled only, and a third control group was injected daily with pimozide, a dopamine antagonist, and stressed for 6-9 days. The group which received no treatment had significantly greater (P less than 0.05) incidence of successful pregnancy compared to the other 3 groups; there were no differences (P greater than 0.05) between the sampled, restraint and restraint + pimozide groups in the incidence of successful pregnancy. We conclude that restraint stress during the nocturnal PRL surge minimally affects the length of PSP and that the effect of stress on the outcome of pregnancy is not due to the decrease in nocturnal PRL surge.  相似文献   

20.
Polyvinyl catheters were placed into the right and left utero-ovarian veins and saphenous vein and artery of three control (C) and four estradiol valerate (EV) treated gilts on Day 9 after onset of estrus. The EV treated gilts received 5mg EV/day on Days 11 through 15 after onset of estrus. On Days 12 through 17 utero-ovarian vein blood samples were collected at 15 min intervals from 0700 to 1000 hr and 1900 to 2200 hr and single samples were taken at 1100 and 2300 hr. Peripheral blood samples (saphenous vein or artery) were taken at 0700, 1100, 1900 and 2300 hr from Day 12 until the control gilts returned to estrus or until Day 25 for EV treated gilts and used to measure plasma steroid hormone concentrations. Utero-ovarian vein prostaglandin F (PGF) concentrations (ng/ml, n=1,177) were measured by RIA. Status (control EV treated gilts) by day interactions were detected (P=.10). Curvilinear day trends were detected for plasma PGF concentrations in control (P<.01) but not EV treated gilts. PGF concentrations ( ) for control and EV treated gilts were 1.20 ± 2.08 and .26 ± .84 ng/ml, respectively. PGF peaks (concentrations greater than + 2 S.D.) occured with greater frequency in control gilts (X2 = 4.87; P<.05). The interestrus interval ( ) for control and treated gilts was 19.0 ± .6 and 146.5 ± 74.8 days, respectively. Data indicate that estradiol valerate may exert its luteotrophic effect by preventing PGF release from the uterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号