首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Affinity sorbents and detoxification strategies are described to remove different amounts of endotoxin. Advantages and disadvantages of the employed ligands are discussed and it is shown that both electrostatic and hydrophobic interactions contribute to the association of ligands and endotoxins. Furthermore, the flexibility of the ligand is more important than an exact structural match between ligand and ligate. Owing to the formation of endotoxin micelles and vesicles, microfiltration membrane adsorbers are particularly effective since mass transfer restrictions are almost absent in the flow-through pores.  相似文献   

2.
Surface-modified flat-sheet microfiltration membranes were functionalised with poly-l-lysine, polymyxin B, poly(ethyleneimine), l-histidine, histamine, α-amylase and DEAE as well as deoxycholate. Their suitability to remove endotoxin from both buffers and protein solutions was examined using bovine serum albumin, murine IgG1 and lysozyme as model proteins. In protein-free solutions reduction from 6000 EU/ml to <0.1 EU/ml was achieved with all applied ligands; only α-amylase as well as l-histidine and histamine, when immobilized via the non-ionic spacer bisoxirane, exhibited low clearance factors at neutral pH. The adsorption of endotoxin is mainly ruled by electrostatic interaction forces. Thus in multi-component systems, such as endotoxin-contaminated protein solutions, competing interactions take place: acidic proteins compete with endotoxin for binding sites at the membrane adsorbers, basic proteins compete with the ligands for endotoxin and act as endotoxin carriers. With properly chosen conditions the membrane adsorbers presented here show exceptional effectiveness also in the presence of proteins. They are generally superior to functionalised Sepharose chromatographic sorbents and allow fast processing. They may contribute to reduce the risks in the application of parenterals and diagnostics.  相似文献   

3.
Immobilization of phototrophic microogranisms: microalgae (MA) and cyanobacteria (CB) on polyethylenimine (PEI)-based sorbents was studied. For this purpose, 3 insoluble porous polymeric materials were synthesized by cross-linking of PEI with epichlorohydrine and immobilization of PEI on the surface of styrene–divinylbenzene copolymer. The sorbent on the basis of cross-linked PEI was also alkylated with hexadecyl bromide to achieve hydrophobicity of its surface. The analysis of kinetics and efficiency of immobilization assessed for the model MA and CB cultures revealed the significant difference in the sorption activity of different types of sorbents depending on their synthesis procedure, chemical composition and hydrophilic-hydrophobic properties of polymeric surface. The hydrophobic sorbent obtained by immobilization of PEI on the surface of styrene–divinylbenzene copolymer characterized by very low sorption activity towards CB and MA cells. The highest immobilization efficiency of phototrophic cells was achieved for the hydrophilic sorbent on the basis of PEI cross-linked with epichlorohydrine, which provided the attachment of 50–70% of cells during 3 h of incubation. The hydrophobic sorbent based on alkylated cross-linked PEI effectively immobilized CB cells, while the colonization of the polymer surface by MA cells was very scarce. The noticed effect is explained by difference in prokaryotic (CB) and eukaryotic (MA) types of surface structures organization. Assessment of photosynthetic activity of immobilized MA cells by pulse-modulated fluorometry showed that hydrophobic sorbents had no toxic effect on the cells, while toxicity of hydrophilic cross-linked PEI-based sorbent was observed only after long-term cultivation ofphototrophic cells with this sorbent.  相似文献   

4.
Tseng WC  Jong CM 《Biomacromolecules》2003,4(5):1277-1284
In vivo instability of a polycationic vector limits its efficacy after systemic administration. Conjugation of hydrophilic polymers with neutral charge onto polycationic vectors has been used to improve the stability by reducing the interactions between the vectors and the blood components, such as serum albumin. In this study, dextrans of molecular weight 10000 (dex-10000) and 1500 (dex-1500) were used to produce various degrees of grafting on linear and branched polyethylenimines (PEI), and the dextran-grafted polymers were used to prepare DNA-polymer complexes. The changes in size and in zeta-potential and the extent of DNA release after the exposure of the complexes to bovine serum albumin (BSA) were used to evaluate the stability of the complexes prepared at various ratios of DNA to polymer. Only the use of dextran-grafted branched PEI was found to be effective to improve the stability of the complexes in the presence of BSA. Dex-10000 was noted to provide a slightly better shielding than dex-1500 against the aggregation caused by BSA and helped maintain the sizes within 200 nm and the zeta-potentials close to neutral. It is thus concluded that the dextran-grafted branched PEI improved the stability of the DNA-polymer complexes and showed potential to conjugate with ligands for in vivo targeted gene delivery.  相似文献   

5.
Strong anion exchange chromatography has frequently been employed as a viral clearance step during downstream processing of biological therapeutics. When challenged with viruses having only slightly acidic isoelectric points, the performance of the anion exchange operation becomes highly dependent on the buffer salt concentration, with the virus log reduction value (LRV) dropping dramatically in buffers with 50–150 mM salt. In this work, a series of anion exchange membrane adsorbers utilizing alternative ligand chemistries instead of the traditional quaternary amine (Q) ligand have been developed that overcome this limitation. Four different ligands (agmatine, tris‐2‐aminoethyl amine, polyhexamethylene biguanide, and polyethyleneimine) achieved >5 LRV of bacteriophage ΦX174 (pI ~ 6.7) at pH 7.5 and up to 150 mM salt, compared to 0 LRV for the Q ligand. By evaluating structural derivatives of the successful ligands, three factors were identified that contributed to ligand salt tolerance: ligand net charge, ligand immobilization density on the membrane, and molecular structure of the ligand‐binding group. Based on the results of this study, membrane adsorbers that incorporate alternative ligands provide a more robust and salt tolerant viral clearance‐processing step compared to traditional strong anion exchange membrane adsorbers. Biotechnol. Bioeng. 2009;103: 920–929. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
We have recently characterized specific binding sites for human interferon-gamma on particulates prepared from the protocerebrum and hemolymph of tobacco hornworm larvae, Manduca sexta ?(Parker, M.S., Ourth, D.D., 1999. Comp. Biochem. Physiol. B 122, 155-163). The sensitivity to sulfated polysaccharides indicated an involvement of oligobasic epitopes of hIFN-gamma in the binding. In the present study, we found that polycationic peptides inhibited the binding of [125I]hIFN-gamma to particulates from either the hemolymph or the protocerebrum of Manduca sexta larvae. With amino acid homopolymers, the rank order of potency was poly-L-lysine > poly-L-arginine > poly-L-ornithine, while the acidic side chain polymer poly-L-aspartate was not inhibitory. However, the potency of all polycationic peptides was at least three-fold greater at the hemolymph particulates. Also, acidic polysaccharides such as heparin were much more efficacious in the inhibition of hIFN-gamma binding to hemolymph relative to protocerebral particulates. The peptide polycations inhibited the binding of [125I](Leu31,Pro34)human peptide YY, a ligand selective for the Y1 subtype of the neuropeptide Y receptor, to rabbit kidney or to parietal cortex particulates with the expected rank order of poly-L-arginine > poly-L-lysine > poly-L-ornithine, and with little cross-tissue difference in affinity. The selectivity observed with M. sexta particulates indicates a preferential involvement of oligobasic lysine-rich C-terminal sequences of IFN-gamma, while large insect tissue-related affinity differences point to involvement of diverse oligoacidic sequences in binding to protocerebrum and hemolymph sites. This study provides evidence for the presence of molecules in lepidopteran larvae that are similar in structure to vertebrate co-receptors of IFN-gamma, and adds to the characterization of these binding sites.  相似文献   

7.
The complexes of synthetic polymer ligands, i.e. poly-L-lysine, poly-4-vinyl-pyridine, poly-N-vinyl-2-methylimidazole and the higher branched polyethyleneimine, with ferri- or ferro-protoporphyrin IX were studied from the standpoint of polymer ligand effects by comparison with those of their monomeric model ligand complexes and poly-gamma-benzyl-L-glutamate containing an imidazole nucleus at the chain end. The coordination numbers and formation constants were determined optically and their structures were also estimated. The coordination number of a poly-L-lysine complex was two, but those of other polymer ligand complexes were one. One of the polymer effects, which was indicated by the large formation constants of the polymer complexes, was caused by the increment of the local ligand concentration around the polymer chain. Another was caused by the conformational effect of an alpha-helical structure in the poly-L-lysine complexes. The interaction of a poly-L-lysine-heme complex with molecular oxygen was also studied. An observed pseudo-allosteric phenomenon may be due to the specific structure of a poly-L-lysine complex which is different from those of other polymer ligand complexes.  相似文献   

8.
A perylene ligand, N,N-bis-(1-aminopropyl-3-propylimidazol salt)-3,4,9,10-perylene tetracarboxylic acid diimide ligand (PDI), which consisted of π-conjugated perylene moiety and hydrophilic side chains with positively charged imidazole rings, was used to wrap G-quadruplex for fluorescence turn-on K(+) recognition. Electrostatic attraction between PDI's positively charged imidazole rings and DNA's negatively charged phosphate backbones enabled PDI to accumulate on DNA. Upon trapping K(+), these G-rich DNA sequences transitioned to G-quadruplex. Subsequently, PDI ligands wrapped G-quadruplex, in which the flat aromatic core of PDI ligand interacted with G-quartet through π-π stacking and the side chains were positioned in grooves through electrostatic interactions. Consequently, the interaction mode change and conformational transition from PDI stacked G-sequence to PDI wrapped G-quadruplex led to PDI fluorescence enhancement, which was readily monitored as the detection signal. This strategy excluded the sequence tagging step and exhibited high selectivity and sensitivity towards K(+) ion with the linear detection range of 10-150nM. Besides, PDI ligands may hold diagnostic and therapeutic application potentials to human telomere and cancer cells.  相似文献   

9.
The purpose of this work was to investigate the sorbents on the basis of polyethylenimine (PEI) intended for collecting biomass of microalgae (MA). For this purpose, a series of porous and insoluble polymeric materials were synthesized by cross-linking of PEI with epichlorohydrine. The analysis of kinetics and efficiency of immobilization assessed for the model culture Chlorella vulgaris, revealed that already within 3 h of incubation, 39–75% of MA cells attached to the surface of tested sorbents. It was shown that on the initial stage of immobilization the sorption activity of polymeric materials depended on the “PEI:crosslinker” ratio. One of the tested sorbents was additionally quartenized by alkylation with dimethyl sulphate resulting in sharp increase of its sorption activity. The estimation of the MA desorption from polymeric surface showed that most Ch. vulgaris cells were practically irreversibly immobilized on all tested sorbents based on the PEI cross-linked with epichlorohydrine.  相似文献   

10.
The binding of Congo red to several purified amyloid-like peptides having a beta-pleated sheet conformation was quantitatively examined. Congo red binds preferentially to the beta-pleated sheet conformation of both insulin fibrils and poly-L-lysine. Congo red does not bind nearly so well to poly-L-serine or polyglycine, despite the fact that these peptides also have a beta-pleated sheet conformation. Binding to insulin fibrils was saturable with an apparent Bmax of 2 moles of Congo red per mole of insulin fibrils and an apparent KD of 1.75 x 10(-7) M. Binding to beta-poly-L-lysine was similar but had a much higher apparent Bmax of 43. Binding of Congo red to beta-poly-L-lysine was pH dependent and appeared to be determined by the number of protonated lysine residues in the 250 amino acid peptide. We present a new hypothesis in which Congo red binds to amyloid-like proteins via bonds between the two negatively charged sulfonic acid groups of Congo red and two positively charged amino acid residues of two separate protein molecules which are properly oriented by virtue of the beta-pleated sheet conformation of the peptide backbone.  相似文献   

11.
Interactions of polycationic polymers with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and live cell membranes (KB and Rat2) have been investigated using atomic force microscopy (AFM), cytosolic enzyme assays, confocal laser scanning microscopy (CLSM), and a fluorescence-activated cell sorter (FACS). Polycationic polymers poly-L-lysine (PLL), polyethylenimine (PEI), and diethylaminoethyl-dextran (DEAE-DEX) and sphere-like poly(amidoamine) (PAMAM) dendrimers are employed because of their importance for gene and drug delivery. AFM studies indicate that all the polycationic polymers cause the formation and/or expansion of preexisting defects in supported DMPC bilayers in the concentration range of 1-3 microg/mL. By way of contrast, hydroxyl-containing neutral linear poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA) do not induce hole formation or expand the size of preexisting defects in the same concentration range. All polymers tested are not toxic to KB or Rat2 cells up to a 12 microg/mL concentration (XTT assay). In the concentration range of 6-12 microg/mL, however, significant amounts of the cytosolic enzymes lactate dehydrogenase (LDH) and luciferase (LUC) are released. PEI, which possesses the greatest density of charged groups on its chain, shows the most dramatic increase in membrane permeability. In addition, treatment with polycationic polymers allows the small dye molecules propidium idodide (PI) and fluorescein (FITC) to diffuse in and out of the cells. CLSM images also show internalization of PLL labeled with FITC dye. In contrast, controls of membrane permeability using the neutral linear polymers PEG and PVA show dramatically less LDH and LUC leakage and no enhanced dye diffusion. Taken together, these data are consistent with the hypothesis that polycationic polymers induce the formation of transient, nanoscale holes in living cells and that these holes allow a greatly enhanced exchange of materials across the cell membrane.  相似文献   

12.
Endotoxin removal by charge-modified filters.   总被引:1,自引:1,他引:0       下载免费PDF全文
C P Gerba  K Hou 《Applied microbiology》1985,50(6):1375-1377
The effects of positively charged nylon and depth (cellulose-diatomaceous earth) filters on endotoxin removal from various solutions were evaluated. The charged filter media removed significant amounts of Escherichia coli and natural endotoxin from tap water, distilled water, sugars, and NaCl solutions; no significant removal of endotoxin was observed with negatively charged filter media. The extent of removal was influenced by pH, the presence of salts, and organic matter. Such media may be useful for the control of endotoxins in raw-product water or solutions used to prepare parenteral drug products or in other fluids where endotoxin control is desired.  相似文献   

13.
The effects of positively charged nylon and depth (cellulose-diatomaceous earth) filters on endotoxin removal from various solutions were evaluated. The charged filter media removed significant amounts of Escherichia coli and natural endotoxin from tap water, distilled water, sugars, and NaCl solutions; no significant removal of endotoxin was observed with negatively charged filter media. The extent of removal was influenced by pH, the presence of salts, and organic matter. Such media may be useful for the control of endotoxins in raw-product water or solutions used to prepare parenteral drug products or in other fluids where endotoxin control is desired.  相似文献   

14.
We have tested the zeta potential (zeta, the surface charge density) of transfection complexes formed in serum-free medium as a rapid and reliable technique for screening transfection efficiency of a new reagent or formulation. The complexes of CAT plasmid DNA (1 microgram) and DC-chol/DOPE liposomes (3-20 nmol) were largely negatively charged (zeta=-15 to -21 mV), which became neutral or positive as 0.5 microgram or a higher amount of poly-L-lysine (PLL, MW 29300 or MW 204000) was added (-3.16+/-3.47 to +6.04+/-2.23 mV). However, the complexes of CAT plasmid DNA (1 microgram) and PLL MW 29300 (0.5 microgram or higher) were neutral or positively charged (-3.22+/-2.3 to +6.55+/-0.64 mV), which remained the same as 6.6 nmol of the liposomes was added. The complexes formed between two positively charged compounds, PLL MW 29300 (0.5 microgram) and the liposomes (3-20 nmol), were as closely positively charged as DNA/PLL or DNA/liposomes/PLL complexes (+3.31+/-0.41 to 7.16+/-1.0 mV). These results indicate that PLL determined the overall charge of the DNA/liposome/PLL ternary complexes. The complexes formed with histone (0.75 microgram or higher) were also positively charged, whose transfection activity was as high as PLL MW 29300. However, the complexes formed with protamine or PLL MW 2400 remained negatively charged. These observations are in good agreement with the transfection activity of the formulation containing each polycationic polymer. The presence of PLL MW 29300 did not change the hydrodynamic diameter of DNA/liposome/PLL complexes (d(H)=275-312 nm). The complexes made of different sizes of PLL (MW 2400 and 204000) also did not significantly change their size. This suggests that DNA condensation may not be critical. Therefore, zeta of the transfection complex can predict the transfection efficiency of a new formulation or reagent.  相似文献   

15.
Monoliths based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) can be used directly as sorbents for affinity chromatography after solid phase peptide synthesis. The quality of the synthesized products, the amount of grown peptides on a support and the reproducibility of the process must be considered. A determination of the quantity of the introducing beta-Ala (and, consequently, the total amount of synthesized peptide) was carried out. Three peptides complementary to recombinant tissue plasminogen activator (t-PA) have been synthesized using Fmoc-chemistry on GMA-EDMA disks. The peptidyl ligands were analysed by amino acid analysis, ES-MS and HPLC methods. The affinity binding parameters were obtained from frontal elution data. The results were compared with those established for GMA-EDMA affinity sorbents formed by the immobilization of the same but separately synthesized and purified ligands. The immobilization on GMA-EDMA disks was realized using a one-step reaction between the amino groups of the synthetic ligand and the original epoxy groups of monolithic material. The affinity constants found for two kinds of sorbent did not vary significantly. Finally, the directly obtained affinity sorbents were tested for t-PA separation from a cellular supernatant.  相似文献   

16.
M Ikeda  T Kusaka 《Steroids》1989,54(2):217-226
Immobilization of the estrogen receptor to the N-hydroxysuccinimide ester of succinylethylenediaminocarboxymethyl agarose (Reagent B) is described and compared with that to the charged N-hydroxysuccinimide ester derivative (Reagent A), previously described. The time course for immobilization was examined. Thirty-six percent of the input receptor was immobilized within 1 h. The optimum pH in immobilization is 7.0-7.4. The dissociation rate of [3H]estradiol(3,17 beta-1,3,5(10)-estratriene) from the [3H]estradiol-receptor complex immobilized to Reagent B was similar to that in Reagent A. The receptor immobilized to Reagent B was saturated with estradiol at 5 h. The [3H]estradiol concentration necessary for saturation was 10 nM. The dissociation constant (KD) for the receptor immobilized to Reagent B was 0.95 X 10(-9) M.  相似文献   

17.
Polycationic polymers have been noted for their effects in promoting cell adhesion to various surfaces, but previous studies have failed to describe a mechanism dealing with this type of adhesion. In the present study, three polycationic polymers (chitosan, poly-L-lysine, and lysozyme) were tested for their effects on microbial hydrophobicity, as determined by adhesion to hydrocarbon and polystyrene. Test strains (Escherichia coli, Candida albicans, and a nonhydrophobic mutant, MR-481, derived from Acinetobacter calcoaceticus RAG-1) were vortexed with hexadecane in the presence of the various polycations, and the extent of adhesion was measured turbidimetrically. Adhesion of all three test strains rose from near zero values to over 90% in the presence of low concentrations of chitosan (125 to 250 micrograms/ml). Adhesion occurred by adsorption of chitosan directly to the cell surface, since E. coli cells preincubated in the presence of the polymer were highly adherent, whereas hexadecane droplets pretreated with chitosan were subsequently unable to bind untreated cells. Inorganic cations (Na+, Mg2+) inhibited the chitosan-mediated adhesion of E. coli to hexadecane, presumably by interfering with the electrostatic interactions responsible for adsorption of the polymer to the bacterial surface. Chitosan similarly promoted E. coli adhesion to polystyrene at concentrations slightly higher than those which mediated adhesion to hexadecane. Poly-L-lysine also promoted microbial adhesion to hexadecane, although at concentrations somewhat higher than those observed for chitosan. In order to study the effect of the cationic protein lysozyme, adhesion was studied at 0 degree C (to prevent enzymatic activity), using n-octane as the test hydrocarbon. Adhesion of E. coli increased by 70% in the presence of 80 micrograms of lysozyme per ml. When the negatively charged carboxylate residues on the E. coli cell surface were substituted for positively charged ammonium groups, the resulting cells became highly hydrophobic, even in the absence of polycations. The observed "hydrophobicity" of the microbial cells in the presence of polycations is thus probably due to a loss of surface electronegativity. The data suggest that enhancement of hydrophobicity by polycationic polymers is a general phenomenon.  相似文献   

18.
Although peptide nucleic acids (PNAs) are neutral by themselves, they are usually appended with positively charged lysine residues to increase their solubility and binding affinity for nucleic acid targets. Thus obtained cationic PNAs very effectively interact with the designated duplex DNA targets in a sequence-specific manner forming strand-invasion complexes. We report on the study of the nonspecific effects in the kinetics of formation of sequence-specific PNA-DNA complexes. We find that in a typical range of salt concentrations used when working with strand-invading PNAs (10-20 mM NaCl) the PNA binding rates essentially do not depend on the presence of nontarget DNA in the reaction mixture. However, at lower salt concentrations (<10 mM NaCl), the rates of PNA binding to DNA targets are significantly slowed down by the excess of unrelated DNA. This effect of nontarget DNA arises from depleting the concentration of free PNA capable of interacting with DNA target due to adhesion of positively charged PNA molecules on the negatively charged DNA duplex. As expected, the nonspecific electrostatic effects are more pronounced for more charged PNAs. We propose a simple model quantitatively describing all major features of the observed phenomenon. This understanding is important for design of and manipulation with the DNA-binding polycationic ligands in general and PNA-based drugs in particular.  相似文献   

19.
Host selection can be a strategy to simplify downstream processing for protein recovery. Advancing capabilities for using plants as hosts offers new host opportunities that have received only limited attention from a downstream processing perspective. Here, we investigated the potential of using a polycationic precipitating agent (polyethylenimine; PEI) to precipitate an acidic model protein (beta-glucuronidase; GUS) from aqueous plant extracts. To assess the potential of host selection to enhance the ease of recovery, the same procedure was applied to oilseed extracts of canola, corn (germ), and soy. For comparison, PEI precipitation of GUS was also evaluated from a crude bacterial fermentation broth. Two versions of the target protein were investigated--the wild-type enzyme (WTGUS) and a genetically engineered version containing 10 additional aspartates on each of the enzyme's four homologous subunits (GUSD10). It was found that canola was the most compatible expression host for use with this purification technique. GUS was completely precipitated from canola with the lowest dosage of PEI (30 mg PEI/g total protein), and over 80% of the initial WTGUS activity was recovered with 18-fold purification. Precipitation from soy gave yields over 90% for WTGUS but only 1.3-fold enrichment. Corn, although requiring the most PEI relative to total protein to precipitate (210 mg PEI/g total protein for 100% precipitation), gave intermediate results, with 81% recovery of WTGUS activity and a purification factor of 2.6. The addition of aspartate residues to the target protein did not enhance the selectivity of PEI precipitation in any of the systems tested. In fact, the additional charge reduced the ability to recover GUSD10 from the precipitate, resulting in lower yields and enrichment ratios compared to WTGUS. Compared to the bacterial host, plant systems provided lower polymer dosage requirements, higher yields of recoverable activity and greater purification factors.  相似文献   

20.
The electrostatic potential of Escherichia coli dihydrofolate reductase   总被引:2,自引:0,他引:2  
Escherichia coli dihydrofolate reductase (DHFR) carries a net charge of -10 electrons yet it binds ligands with net charges of -4 (NADPH) and -2 (folate or dihydrofolate). Evaluation and analysis of the electrostatic potential of the enzyme give insight as to how this is accomplished. The results show that the enzyme is covered by an overall negative potential (as expected) except for the ligand binding sites, which are located inside "pockets" of positive potential that enable the enzyme to bind the negatively charged ligands. The electrostatic potential can be related to the asymmetric distribution of charged residues in the enzyme. The asymmetric charge distribution, along with the dielectric boundary that occurs at the solvent-protein interface, is analogous to the situation occurring in superoxide dismutase. Thus DHFR is another case where the shape of the active site focuses electric fields out into solution. The positive electrostatic potential at the entrance of the ligand binding site in E. coli DHFR is shown to be a direct consequence of the presence of three positively charged residues at positions 32, 52, and 57--residues which have also been shown recently to contribute significantly to electronic polarization of the ligand folate. The latter has been postulated to be involved in the catalytic process. A similar structural motif of three positively charged amino acids that gives rise to a positive potential at the entrance to the active site is also found in DHFR from chicken liver, and is suggested to be a common feature in DHFRs from many species. It is noted that, although the net charges of DHFRs from different species vary from +3 to -10, the enzymes are able to bind the same negatively charged ligands, and perform the same catalytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号