首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophilic solute transport across rat alveolar epithelium   总被引:1,自引:0,他引:1  
Diffusional fluxes of a series of hydrophilic nonelectrolytes (molecular radii ranging from 0.15 to 0.57 nm) were measured across the alveolocapillary barrier in the isolated perfused fluid-filled rat lung. Radiolabeled solutes were lavaged into the distal air spaces of isolated Ringer-perfused lungs, and apparent permeability-surface area products were calculated from the rates of isotope appearance in the recirculating perfusate. These data were used to estimate theoretical equivalent pore radii in the alveolar epithelium, with the assumption of diffusive flow through water-filled cylindrical pores. The alveolar epithelium is best characterized by two pore populations, with small pores (radius 0.5 nm) occupying 98.7% of total pore area and larger pores (radius 3.4 nm) occupying 1.3% of total pore area. Net water flow out of the alveolar space was measured by including an impermeant solute (dextran) in the lavage fluid and measuring its concentration in the alveolar space as a function of time. Under control conditions, net water flow averaged 167 nl/s. When 24 microM terbutaline was added to the perfusate, net water flow increased significantly to 350 nl/s (P less than 0.001). Terbutaline had no effect on the fluxes of either glycerol (which traverses the small pore pathway) or sucrose (which traverses the large pore pathway). These findings indicate that the intact mammalian alveolar epithelium is complex and highly resistant to the flow of solutes and water.  相似文献   

2.
Successful implementation of bioremediation clean-up strategies depends on accurate predictions of the transport of bacteria within the subsurface. In this study, etched flat-plate glass micromodels were used to examine bacterial transport in a homogenous network. These networks were created by acid-etching interconnected channels into a glass plate and then fusing it to an unetched plate forming semi-cylindrical pores. The transparent nature of the micromodel allows for both qualitative observations of the bacteria within the pores and quantitative measurements of their concentration. The micromodels are designed to allow establishment of a well-characterized step change in bacterial concentration (Escherichia coli NR50) within the network. During the experiments, bacteria are dispersed through the network by flow. Light scattering is used to detect the change in turbidity within the pores as the bacteria travel through the network. The change in turbidity is used to construct breakthrough curves and spatial concentration profiles of bacteria within the network. The breakthrough curves are fit to the one-dimensional advection/dispersion equation to determine dispersion coefficients at different interstitial fluid velocities. From the breakthrough curves, dispersion coefficients were reproducible for replicate experiments over a range of velocities in the advection-dominated regime. The dispersivity values for two network designs resembling an interconnecting capillary network and a spatially periodic network of cylinders were 0.28 and 0.33 cm respectively, which are slightly greater than the literature values found for other pore networks. Experiments were also conducted within the diffusion-dominated regime to examine the effects of bacterial motility on dispersion. The accumulation of bacteria on the pore walls became significant at the low flow rates and extended experimental times thereby rendering the use of light scattering to determine concentrations ineffective. Bacterial chemotaxis, created by a self-imposed oxygen gradient, was also observed in the micromodel under stagnant fluid conditions.  相似文献   

3.
A three-dimensional pore network model for diffusion in porous adsorbent particles was employed in a dynamic adsorption model that simulates the adsorption of a solute in porous particles packed in a chromatographic column. The solution of the combined model yielded the dynamic profiles of the pore diffusion coefficient of beta-galactosidase along the radius of porous adsorbent particles and along the length of the column as the loading of beta-galactosidase onto anti-beta-galactosidase immobilized on the surface of the pores of the particles occurred, and, the dynamic adsorptive capacity of the chromatographic column as a function of the design and operational parameters of the chromatographic system. It was found that for a given column length the dynamic profiles of the pore diffusion coefficient were influenced by (a) the superficial fluid velocity in the column, (b) the diameter of the adsorbent particles, and (c) the pore connectivity of the porous structure of the adsorbent particles. The effect of the magnitude of the pore connectivity on the dynamic profiles of the pore diffusion coefficient of beta-galactosidase increased as the diameter of the adsorbent particles and the superficial fluid velocity in the column increased. The dynamic adsorptive capacity of the column increased as (i) the particle diameter and the superficial fluid velocity in the column decreased, and (ii) the column length and the pore connectivity increased. In preparative affinity chromatography, it is desirable to obtain high throughputs within acceptable pressure gradients, and this may require the employment of larger diameter adsorbent particles. In such a case, longer column lengths satisfying acceptable pressure gradients with adsorbent particles having higher pore connectivity values could provide high dynamic adsorptive capacities. An alternative chromatographic system could be comprised of a long column packed with large particles which have fractal pores (fractal particles) that have high pore connectivities and which allow high intraparticle diffusional and convective flow mass transfer rates providing high throughputs and high dynamic adsorptive capacities. If large scale monoliths could be made to be reproducible and operationally stable, they could also offer an alternative mode of operation that could provide high throughputs and high dynamic adsorptive capacities.  相似文献   

4.
We have developed an integrated laser trap/flow control video microscope for mechanical manipulation of single biopolymers. The instrument is automated to maximize experimental throughput. A single-beam optical trap capable of trapping micron-scale polystyrene beads in the middle of a 200-microm-deep microchamber is used, making it possible to insert a micropipette inside this chamber to hold a second bead by suction. Together, these beads function as easily exchangeable surfaces between which macromolecules of interest can be attached. A computer-controlled flow system is used to exchange the liquid in the chamber and to establish a flow rate with high precision. The flow and the optical trap can be used to exert forces on the beads, the displacements of which can be measured either by video microscopy or by laser deflection. To test the performance of this instrument, individual biotinylated DNA molecules were assembled between two streptavidin beads, and the DNA elasticity was characterized using both laser trap and flow forces. DNA extension under varying forces was measured by video microscopy. The combination of the flow system and video microscopy is a versatile design that is particularly useful for the study of systems susceptible to laser-induced damage. This capability was demonstrated by following the translocation of transcribing RNA polymerase up to 650 s.  相似文献   

5.
? The flow of xylem sap through conifer bordered pits, particularly through the pores in the pit membrane, is not well understood, but is critical for an understanding of water transport through trees. ? Models solving the Navier-Stokes equation governing fluid flow were based on the geometry of bordered pits in black spruce (Picea mariana) and scanning electron microscopy images showing details of the pores in the margo of the pit membrane. ? Solutions showed that the pit canals contributed a relatively small fraction of resistance to flow, whereas the torus and margo pores formed a large fraction, which depended on the structure of the individual pit. The flow through individual pores in the margo was strongly dependent on pore area, but also on the radial location of the pore with respect to the edge of the torus. ? Model results suggest that only a few per cent of the pores in the margo account for nearly half of the flow and these pores tend to be located in the inner region of the margo where their contribution will be maximized. A high density of strands in outer portions of the margo (hence narrower pores) may be more significant for mechanical support of the torus.  相似文献   

6.
The interstitial spaces within streambeds are recognized as an important location of dissolved inorganic nitrogen (DIN) transformations in streams. However, it remains uncertain how physical characteristics of streambeds affect the magnitude and net outcome of subsurface nitrogen transformations. We tested whether the size distribution of streambed sediments, in isolation from the influence of streambed topography and groundwater upwelling, could affect net DIN uptake or production along interstitial flow paths. Mesocosms constructed from PVC pipe (15 cm diameter × 1 m long) were filled with either coarse gravel/cobble or gravel/cobble mixed with finer sediments (5 mesocosms per sediment treatment). Mesocosms were submerged in a stream and oriented, so that surface water flowed through the sediments. After 2 months incubation, we measured DIN in interstitial water at 20 cm intervals and dissolved oxygen at 10 cm intervals along mesocosm flow paths. In both sediment types, DIN concentrations increased longitudinally along mesocosm flow paths in the direction of interstitial flow, indicating net DIN production. Although DIN increased to higher concentrations in mesocosms with fine sediments, greater exchange flow through coarse sediments resulted in similar rates of net DIN production and delivery to surface water. Production of DIN in both sediment types was concentrated within the first 10 cm of interstitial flow paths, with no significant production further along the flow paths. Coarse sediments had higher rates of oxygen consumption per unit sediment volume than the coarse–fine sediment mix, suggesting interstitial water velocity may be an important factor affecting hyporheic microbial metabolism.  相似文献   

7.
Bioreactors are widely used in tissue engineering as a way to distribute nutrients within porous materials and provide physical stimulus required by many tissues. However, the fluid dynamics within the large porous structure are not well understood. In this study, we explored the effect of reactor geometry by using rectangular and circular reactors with three different inlet and outlet patterns. Geometries were simulated with and without the porous structure using the computational fluid dynamics software Comsol Multiphysics 3.4 and/or ANSYS CFX 11 respectively. Residence time distribution analysis using a step change of a tracer within the reactor revealed non-ideal fluid distribution characteristics within the reactors. The Brinkman equation was used to model the permeability characteristics with in the chitosan porous structure. Pore size was varied from 10 to 200 microm and the number of pores per unit area was varied from 15 to 1,500 pores/mm(2). Effect of cellular growth and tissue remodeling on flow distribution was also assessed by changing the pore size (85-10 microm) while keeping the number of pores per unit area constant. These results showed significant increase in pressure with reduction in pore size, which could limit the fluid flow and nutrient transport. However, measured pressure drop was marginally higher than the simulation results. Maximum shear stress was similar in both reactors and ranged approximately 0.2-0.3 dynes/cm(2). The simulations were validated experimentally using both a rectangular and circular bioreactor, constructed in-house. Porous structures for the experiments were formed using 0.5% chitosan solution freeze-dried at -80 degrees C, and the pressure drop across the reactor was monitored.  相似文献   

8.
The internal elastic lamina (IEL), which separates the arterial intima from the media, affects macromolecular transport across the medial layer. In the present study, we have developed a two-dimensional numerical simulation model to resolve the influence of the IEL on convective-diffusive transport of macromolecules in the media. The model considers interstitial flow in the medial layer that has a complex entrance condition because of the presence of leaky fenestral pores in the IEL. The IEL was modeled as an impermeable barrier to both water and solute except for the fenestral pores that were assumed to be uniformly distributed over the IEL. The media were modeled as a heterogeneous medium composed of an array of smooth muscle cells (SMCs) embedded in a continuous porous medium representing the interstitial proteoglycan and collagen fiber matrix. Results for ATP and low-density lipoprotein (LDL) demonstrate a range of interesting features of molecular transport and uptake in the media that are determined by considering the balance among convection, diffusion, and SMC surface reaction. The ATP concentration distribution depends strongly on the IEL pore structure because ATP fluid-phase transport is dominated by diffusion emanating from the fenestral pores. On the other hand, LDL fluid-phase transport is only weakly dependent on the IEL pore structure because convection spreads LDL laterally over very short distances in the media. In addition, we observe that transport of LDL to SMC surfaces is likely to be limited by the fluid phase (surface concentration less than bulk concentration), whereas ATP transport is limited by reaction on the SMC surface (surface concentration equals bulk concentration).  相似文献   

9.
ABSTRACT

Sediments composed of oil-particle aggregates (OPAs) have unique physical characteristics. These in situ deposited sediments develop at locations where a continual or nearly continual discharge of non-aqueous phase liquids (NAPLs) have occurred, or are occurring through time. The NAPL discharged into the surface water body interacts with suspended particles in the water column. The particles adhere to the suspended NAPL, which generally is in the form of a bead, and produce a discrete aggregate. As the aggregate grows in response to additional particle adherence, the density of the unit increases and deposition occurs. The resulting sediment consists of a collection of discrete OPAs that form a network with small pores, where oil is tightly bound and/or contained. Porosity, water content, and dry bulk density measurements indicate the sediment formed by OPA deposition is physically unique. Although the sediment consists of a very open pore structure, the pore openings are relatively small, typically being less than 5 microns in diameter. These small pores inhibit fluid movement. Results of physical property testing suggest the OPA structure is retained upon deposition. Although the sediment contains NAPL, this original OPA structure inhibits the oil beads from coalescing, which would enable NAPL flow.  相似文献   

10.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

11.
Theoretical modeling of filtration of blood cell suspensions   总被引:2,自引:0,他引:2  
A theoretical model of filtration of suspensions containing red blood cells (RBCs) and white blood cells (WBCs) has been developed. Equations are written for the pressure drop, the filtration flow and the fractions of filter pores containing RBCs (alpha) and WBCs (alpha*). Because the relative resistances (ratios of resistance of cell to resistance of suspending fluid) of RBCs (beta) and WBCs (beta*) through the filter pore are greater than one, the transit of these cells (especially WBCs) through the filter is slower than that of suspending fluid; this leads to values of alpha and alpha* higher than those simply expected from the hematocrit and leukocrit, respectively, in the entering and exiting suspensions. In the absence of pore plugging by the cells (steady flow), the pressure drop can be computed from alpha, alpha*, beta and beta*. In order to model unsteady flow, differential equations are written to include pore plugging and the subsequent unplugging by the rising filtration pressure at a constant flow. By specifying the fractions of entering RBCs (epsilon) and WBCs (epsilon*) which would plug the pores and the rate at which the plugged pores would unplug in response to pressure rise (epsilon u), as well as the fractions of entering RBCs (epsilon p) and WBCs (epsilon p*) that would plug the pores permanently, theoretical pressure-time curves can be generated by numerical integration, and the results fit the experimental data well. From such fitting of theoretical curve to experimental data, information can be deduced for epsilon, epsilon*, epsilon u, epsilon p and epsilon* p.  相似文献   

12.
The kinetics of transport in pores the size postulated for cell membranes has been investigated by direct computer simulation (molecular dynamics). The simulated pore is 11 Å long and 3.2 Å in radius, and the water molecules are modeled by hard, smooth spheres, 1 Å in radius. The balls are given an initial set of positions and velocities (with an average temperature of 313° K) and the computer then calculates their exact paths through the pore. Two different conditions were used at the ends of the pore. In one, the ends are closed and the balls are completely isolated. In the other, the ball density in each end region is fixed so that a pressure difference can be established and a net convective flow produced. The following values were directly measured in the simulated experiments: net and diffusive (oneway) flux; pressure, temperature, and diffusion coefficients in the pore; area available for diffusion; probability distribution of ball positions in the pore; and the interaction between diffusion and convection. The density, viscosity, and diffusion coefficients in the bulk fluid were determined from the theory of hard sphere dense gases. From these values, the “equivalent” pore radius (determined by the same procedure that is used for cell membranes) was computed and compared with the physical pore radius of the simulated pore.  相似文献   

13.
Interstitial flow through the tunica media of an artery wall in the presence of the internal elastic lamina (IEL), which separates it from the subendothelial intima, has been studied numerically. A two-dimensional analysis applying the Brinkman model as the governing equation for the porous media flow field was performed. In the numerical simulation, the IEL was modeled as an impermeable barrier to water flux, except for the fenestral pores, which were uniformly distributed over the IEL. The tunica media was modeled as a heterogeneous medium composed of a periodic array of cylindrical smooth muscle cells (SMCs) embedded in a fiber matrix simulating the interstitial proteoglycan and collagen fibers. A series of calculations was conducted by varying the physical parameters describing the problem: the area fraction of the fenestral pore (0. 001-0.036), the diameter of the fenestral pore (0.4-4.0 microm), and the distance between the IEL and the nearest SMC (0.2-0.8 microm). The results indicate that the value of the average shear stress around the circumference of the SMC in the immediate vicinity of the fenestral pore could be as much as 100 times greater than that around an SMC in the fully developed interstitial flow region away from the IEL. These high shear stresses can affect SMC physiological function.  相似文献   

14.
The growth rate and albumin concentration of interstitial fluid cuffs were measured in isolated rabbit lungs inflated with albumin solution (3 g/dl) to constant airway (Paw) and vascular pressures for up to 10 h. Cuff size was measured from images of frozen lung sections, and cuff albumin concentration (Cc) was measured from the fluorescence of Evans blue labeled albumin that entered the cuffs from the alveolar space. At 5-cmH2O Paw, cuff size peaked at 1 h and then decreased by 75% in 2 h. The decreased cuff size was consistent with an osmotic absorption into the albumin solution that filled the vascular and alveolar spaces. At 15-cmH2O Paw, cuff size peaked at 0.25 h and then remained constant. Cc rose continuously at both pressures, but was greater at the higher pressure. The increasing Cc with a constant cuff size was modeled as diffusion through epithelial pores. Initial Cc-to-airway albumin concentration ratio was 0.1 at 5-cmH2O Paw and increased to 0.3 at 15 cmH2O, a behavior that indicated an increased permeability with lung inflation. Estimated epithelial reflection coefficient was 0.9 and 0.7, and equivalent epithelial pore radii were 4.5 and 6.1 nm at 5- and 15-cmH2O Paw, respectively. The initial cuff growth occurred against an albumin colloid osmotic pressure gradient because a high interstitial resistance reduced the overall epithelial-interstitial reflection coefficient to the low value of the interstitium.  相似文献   

15.
Abstract

The flux through nanoscale pore is one of the key quantities in many processes including membrane applications and fluid separation. Whereas many efforts have been dedicated to the investigation of the fluid flux in nano-channels, the fluid transport behaviours in the block-pores, which contain distinct parts with different geometries or interactions with fluid, are still poorly understood. In this work, by combining both non-equilibrium dynamics simulation and density functional theory, we developed an efficient method for investigating the fluid flux in the block-pores, with which the fluxes of benzene in graphene block slit pores containing a hydrophobic and a hydrophilic region are thereafter investigated. We demonstrate that a region with a stronger interaction with fluid generates a bottleneck for the fluid flow, which greatly suppresses the flux in the pore even though there is no geometrical variation. By tuning the fluid-substrate interaction, the flux inside can be controlled. This study gives clues for the practical application of membrane design.  相似文献   

16.
Role of pit membranes in macromolecule-induced wilt of plants   总被引:11,自引:1,他引:10       下载免费PDF全文
Macromolecules present in low concentrations in xylem fluid of Medicago sativa L. var DuPuits will increase the resistance to xylem liquid flow. This increase in resistance was found to be reversible by backflushing the xylem. Autoradiography showed that very large molecules do not pass through pit membrane pores. A comparison of pit membrane pore sizes to molecule sizes suggests that increased resistance to xylem flow is a result of plugging pit membrane pores. It was also found that pit membranes located in two parts of the plant differ in the apparent diameter of their pores and, thus, in their susceptibility to plugging by macromolecules. Macromolecules in xylem fluid may result from hostparasite interactions and may play a significant role in the outcome of the interaction.  相似文献   

17.
Clotting in animals having open or closed circulatory system comprises humoral and cellular mechanisms. Sipunculans are a small phylum of non-segmented marine worms that do not have a true circulatory system. These worms can form a cellular clot without transforming cell-free coelomic fluid into an insoluble mass. The clot may also contribute to immune response by entrapping foreign particles. We evaluated the formation of a cellular clot ex vivo in the sipunculan Themiste petricola after activation through glass contact and sea water, the ability to entrap magnetic beads and non-pathogen cyanobacteria particles within the clot, and the presence of a peptidoglycan recognition protein S (PGRP-S) antigen in cells forming the clot. Our results showed that the clot was formed by homotypic aggregation of large granular leukocytes (LGLs), a subtype of cells found in the coelomic fluid. Aggregated LGLs served to entrap magnetic beads and non-pathogen cyanobacteria particles, and PGRP-S antigen was detected both in non-activated LGLs and in activated homotypic aggregates through immunofluorescence, Western blot and flow cytometry. Cellular clots were found to be positive to Annexin V-FITC labelling. Complete disintegration of cytoplasm with shedding of microparticles, nuclear isolation and degradation were also observed by light microscopy and flow cytometry. In conclusion, cellular clot formation in Themiste petricola may serve both haemostatic and immune functions entailing rapid activation changes in LGLs, entrapment of foreign particles within a homotypic aggregate, and further cell death.  相似文献   

18.
H E Swaisgood  I M Chaiken 《Biochemistry》1986,25(14):4148-4155
Bovine neurophysin II (BNP II) was covalently immobilized on both nonporous and porous (200-nm pore diameter) glass beads and incorporated in a high-performance liquid chromatograph to evaluate analytical high-performance affinity chromatography as a microscale method for characterizing biomolecular interactions. By extension of the theoretical treatment of analytical affinity chromatography, both the self-association of neurophysin and its binding of the peptide hormone vasopressin were characterized by using a single chromatographic column containing immobilized neurophysin predominantly in the monomer form. Both [3H] [Arg8]vasopressin (AVP) and 125I-BNP II were rapidly eluted (less than 25 min). The relatively symmetrical elution peaks obtained allowed calculation of both equilibrium dissociation constants and kinetic dissociation rate constants. The dissociation constant measured chromatographically for the AVP-immobilized neurophysin complex, KM/L = 11 microM with porous glass beads and 75 microM with nonporous glass (NPG) beads, was in reasonable agreement with those previously obtained by curve fitting of Scatchard plots (16-20 microM) and from binding to [BNP II]Sepharose (50 microM). The values obtained are larger than that for dissociation of AVP from BNP II dimer, by a factor consistent with the intended nature of immobilized BNP II as monomers. Chromatography of BNP II on the [BNP II]NPG gave a dimer dissociation constant of 166 microM, a value in excellent agreement with that derived from equilibrium sedimentation studies (172 microM). In contrast to the agreement of chromatographic equilibrium binding constants with those measured in solution, the dissociation rate, k-3, determined from the variance of the affinity chromatographic elution profile with nonporous beads, was several orders of magnitude smaller than the solution counterpart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A new solventless photocurable film-coating system was investigated in which nonpareil beads were coated in a minicoating pan with liquid prepolymer (L) and powdered solid pore-forming agents (S) and cured by UV light. Release from the coating could by altered by changing the material, the number of layers, and the coating thickness. Immediate release of a blue dye contained in the nonpareils was obtained with sodium starch glycolate as a pore former that swelled the coating and yielded large pores; through these pores the dye quickly released while leaving behind the scaffold provided by the photocured prepolymer. Simple pore formers (lactose and sodium chloride) dissolved away without swelling and provided a more sustained release. The nature of the scaffold and pore structure of the coating were determined by simultaneously monitoring the release of sodium chloride from the coating and blue dye from the beads. At least 50% of the sodium chloride that was incorporated into the coating released before the dye released through the coating, except at an S/L ratio (ratio of the amount of solid pore-forming agent to the volume of liquid prepolymer) of 2.4, where 40% of the sodium chloride was released before the release of dye. The coupling between dye release and pore formation was found to be dependent on the S/L ratio of the coating. Simulation based on percolation theory showed that the coupling of pore formation and dye release was higher when the variance in tortuosity was lower. The coating was photostable and could withstand normal handling stress. Published: July 13, 2007  相似文献   

20.
Diffusional fluxes of a large number of hydrophilic solutes and water across bullfrog (Rana catesbeiana) alveolar epithelium were measured in the Ussing-type flux chamber. Lungs were isolated from double-pithed animals and studied as flat sheets. Radioactive solutes and water were added to the upstream reservoir, and the rate of change of downstream reservoir radioactivity was monitored. A permeability coefficient was estimated for each substance from a linear relationship between radiotracer concentration in the downstream reservoir and time. These permeability data were used to analyze the equivalent water-filled pore characteristics of the alveolar epithelial barrier. The data reveal that the alveolar epithelium is best characterized by two distinct pore populations rather than by a single homogeneous pore population. The large-pore population consists of pores with a radius of about 5 nm and occupies 4% of the available pore area. The small-pore population consists of pores with a radius of about 0.5 nm and occupies 96% of the available pore area. The number of small pores to large pores is 2.68 X 10(3). After the alveolar surface was damaged by acid, a large-pore population with a radius of about 27 nm was seen, allowing nearly free diffusion of solutes. A major implication of the presence of two populations of pores in the alveolar epithelium is that hydrostatically driven bulk water flow occurs predominantly through the large pores, while osmotically driven bulk water flow takes place predominantly through the small pores. As a result, in general, hydrostatic and osmotic gradients may not be equally effective driving forces for water flow across this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号