首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Poliovirus (PV), when injected intramuscularly into the calf, is incorporated into the sciatic nerve and causes an initial paralysis of the inoculated limb in transgenic mice carrying the human PV receptor (hPVR/CD155) gene. Here, we demonstrated by using an immunoelectron microscope that PV particles exist on vesicle structures in nerve terminals of neuromuscular junctions. We also demonstrated in glutathione S-transferase pull-down experiments that the dynein light chain, Tctex-1, interacts directly with the cytoplasmic domain of hPVR. In the axons of differentiated rat PC12 cells transfected with expression vectors for hPVRs, vesicles composed of PV and hPVR alpha, as well as a mutant hPVR alpha (hPVRM alpha) that had a reduced ability to bind Tctex-1, colocalized with Tctex-1. However, vesicles containing PV, dextran, and hPVR alpha had only retrograde motion, while those containing PV, dextran, and hPVRM alpha had anterograde or retrograde motion. Topical application of the antimicrotubule agent vinblastine to the sciatic nerve reduced the amount of virus transported from the calf to the spinal cord. These results suggest that direct efficient interaction between the cytoplasmic domain and Tctex-1 is essential for the efficient retrograde transport of PV-containing vesicles along microtubules in vivo.  相似文献   

2.
Poliovirus (PV) is easily transferred to humans orally; however, no rodent model for oral infections has been developed because of the alimentary tract's low sensitivity to the virus. Here we showed that PV is inactivated by the low pH of the gastric contents in mice. The addition of 3% NaHCO3 to the viral inoculum increased the titer of virus reaching the small intestine through the stomach after intragastric inoculation of PV. Transgenic mice (Tg) carrying the human PV receptor (hPVR/CD155) gene and lacking the alpha/beta interferon receptor (IFNAR) gene (hPVR-Tg/IfnarKO) were sensitive to the oral administration of PV with 3% NaHCO3, whereas hPVR-Tg expressing IFNAR were much less sensitive. The virus was detected in the epithelia of the small intestine and proliferated in the alimentary tract of hPVR-Tg/IfnarKO. By the ninth day after the administration of a virulent PV, the mice had died. These results suggest that IFNAR plays an important role in determining permissivity in the alimentary tract as well as the generation of virus-specific immune responses to PV via the oral route. Thus, hPVR-Tg/IfnarKO are considered to be the first oral infection model for PV, although levels of anti-PV antibodies were not elevated dramatically in serum and intestinal secretions of surviving mice when hPVR-Tg/IfnarKO were administered an attenuated PV.  相似文献   

3.
Nucleotides (nt) 108 to 742 of an infectious cDNA clone of poliovirus (PV) Mahoney strain, including the corresponding region of the internal ribosome entry site (IRES), was replaced by nt 28 to 710 of hepatitis C virus (HCV) cDNA corresponding to the whole HCV IRES. A chimeric PV (2A-369) was generated by transfecting mammalian cells with an RNA transcribed in vitro from the cDNA. To examine replicating capacity of virus 2A-369 in the brain and liver of a mouse model for poliomyelitis, a new mouse model (MPVRTg25-61) that is transgenic for human PV receptor (hPVR; CD155) was generated in order to obtain a higher expression level of hPVR in the liver than those of hPVRTg mouse lines generated by us so far. The transgene used was constructed by combining a putative regulatory region of the mouse PVR homolog and the whole structural region of the hPVR gene. Virus 2A-369 replicated well in the liver of MPVRTg25-61 but not in the brain, whereas control Mahoney virus replicated well both in the liver and in the brain. The data suggest that the HCV IRES works more efficiently in the liver than in the brain and that PV IRES works well both in the liver and in the brain. The results support the notion that tissue-specific activity of IRES may be reflected in tissue tropism of a virus whose specific translation initiation is driven by IRES, that is, an IRES-dependent virus tropism.  相似文献   

4.
A Zibert  E Wimmer 《Journal of virology》1992,66(12):7368-7373
The human poliovirus receptor (hPVR) is a glycoprotein with three immunoglobulin-like extracellular domains, of which the N-terminal domain (V-type domain) is necessary and sufficient for virus binding and uptake. The effect of N glycosylation of the V domain of hPVR on binding and entry of poliovirus was studied. Stable mouse L-cell lines were generated that express PVR-specific cDNA. One of the cell lines expressed a mutant of hPVR, in which both asparagine residues of the two N-glycosylation sites of the V domain were changed to aspartate (N105D) and serine (N120S), respectively. In the second mutant cell line, the portion of the cDNA encoding the V domain of hPVR was substituted by the homologous sequence of the recently isolated PVR cDNA from monkey cells. This V domain naturally lacks both N glycosylation sites and encodes D105 and S120 at the respective positions of the open reading frame. Absence of N glycosylation at these sites was demonstrated by in vitro translation of the two mutant coding sequences in the presence of microsomal membranes. Both PVR mutant cell lines were capable of poliovirus binding and replication. However, binding of anti-PVR monoclonal antibody D171 and protection from viral replication by this antibody were observed only with the glycosylation mutant carrying the human V domain. In contrast, infection of the cell line expressing the monkey-human hybrid receptor was not blocked even though monkey cells are fully protected by monoclonal antibody D171. The data suggest that N glycosylation of the V domain of hPVR is not essential for viral replication in human tissues and that differential glycosylation of hPVR at these sites is likely not a determinant of viral tissue tropism. Furthermore, the virus binding site and the epitope recognized by monoclonal antibody D171 do not appear to overlap.  相似文献   

5.
The lack of efficient methods for concentrating viruses in water samples leads to underreporting of viral contamination in source water. A novel strategy for viral concentration was developed using the expression of target virus receptors on bacterial cells. Poliovirus type 1, the most studied enterovirus, was used as a surrogate for enteric viruses. The human poliovirus receptor (hPVR) gene was expressed on the surface of Escherichia coli cells by using the ice nucleation protein (INP) gene. The hPVR gene was ligated to the 3' end of the INP gene after the removal of the stop codon. The resulting open reading frame (ORF) was used for the projection of hPVR onto the outer membrane of E. coli. Gene expression was tested by SDS-PAGE, Western blot, and dot blot analyses, and virion capture ability was confirmed by transmission electron microscopy. The application of engineered E. coli cells for capturing viruses in 1-liter samples of source and drinking water resulted in 75 to 99% procedural recovery efficiency. Cell surface display of viral receptors on bacterial cells opens a new prospect for an efficient and inexpensive alternative tool for capturing and concentrating waterborne viruses in water samples.  相似文献   

6.
Structures of all three poliovirus (PV) serotypes (PV1, PV2, and PV3) complexed with their cellular receptor, PV receptor (PVR or CD155), were determined by cryoelectron microscopy. Both glycosylated and fully deglycosylated CD155 exhibited similar binding sites and orientations in the viral canyon for all three PV serotypes, showing that all three serotypes use a common mechanism for cell entry. Difference maps between the glycosylated and deglycosylated CD155 complexes determined the sites of the carbohydrate moieties that, in turn, helped to verify the position of the receptor relative to the viral surface. The proximity of the CD155 carbohydrate site at Asn105 to the viral surface in the receptor-virus complex suggests that it might interfere with receptor docking, an observation consistent with the properties of mutant CD155. The footprints of CD155 on PV surfaces indicate that the south rim of the canyon dominates the virus-receptor interactions and may correspond to the initial CD155 binding state of the receptor-mediated viral uncoating. In contrast, the interaction of CD155 with the north rim of the canyon, especially the region immediately outside the viral hydrophobic pocket that normally binds a cellular "pocket factor," may be critical for the release of the pocket factor, decreasing the virus stability and hence initiating uncoating. The large area of the CD155 footprint on the PV surface, in comparison with other picornavirus-receptor interactions, could be a potential limitation on the viability of PV escape mutants from antibody neutralization. Many of these are likely to have lost their ability to bind CD155, resulting in there being only three PV serotypes.  相似文献   

7.
The development of a mouse model for poliomyelitis that is transgenic for the human poliovirus receptor (hPVR) has made it much easier to investigate the efficiency of the viral dissemination process in a whole organism. These studies have given an insight into the mechanisms of blood-brain barrier permeation and neural transport. Strain-specific neurovirulence levels, however, appear to depend mainly on the replicating capacity of the virus in the central nervous system rather than the dissemination efficiency. Studies of the poliovirus-induced cytopathic effects on neural cells and specific subcellular localization of hPVR isoforms might determine a new course of investigation of poliovirus pathogenesis.  相似文献   

8.
Receptor binding to human poliovirus type 1 (PV1/M) and the major group of human rhinoviruses (HRV) was studied comparatively to uncover the evolution of receptor recognition in picornaviruses. Surface plas- mon resonance showed receptor binding to PV1/M with faster association and dissociation rates than to HRV3 and HRV16, two serotypes that have similar binding kinetics. The faster rate for receptor association to PV1/M suggested a relatively more accessible binding site. Thermodynamics for receptor binding to the viruses and assays for receptor-mediated virus uncoating showed a more disruptive receptor interaction with PV1/M than with HRV3 or HRV16. Cryo-electron microscopy and image reconstruction of receptor-PV1/M complexes revealed receptor binding to the 'wall' of surface protrusions surrounding the 'canyon', a depressive surface in the capsid where the rhinovirus receptor binds. These data reveal more exposed receptor-binding sites in poliovirus than rhinoviruses, which are less protected from immune surveillance but more suited for receptor-mediated virus uncoating and entry at the cell surface.  相似文献   

9.
Poliovirus (PV), when injected intramuscularly into the calf, is incorporated into the sciatic nerve and causes an initial paralysis of the inoculated limb in transgenic (Tg) mice carrying the human PV receptor (hPVR/CD155) gene. We have previously demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerves of hPVR-Tg mice and that intramuscularly inoculated PV causes paralytic disease in an hPVR-dependent manner. Here we showed that hPVR-independent axonal transport of PV was observed in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Using primary motor neurons (MNs) isolated from these mice or rats, we demonstrated that the axonal transport of PV requires several kinetically different motor machineries and that fast transport relies on a system involving cytoplasmic dynein. Unexpectedly, the hPVR-independent axonal transport of PV was not observed in cultured MNs. Thus, PV transport machineries in cultured MNs and in vivo differ in their hPVR requirements. These results suggest that the axonal trafficking of PV is carried out by several distinct pathways and that MNs in culture and in the sciatic nerve in situ are intrinsically different in the uptake and axonal transport of PV.In humans, paralytic poliomyelitis results from the invasion of the central nervous system by circulating poliovirus (PV), probably via the blood-brain barrier. This conclusion is supported by the finding that circulating PV after intravenous inoculation in mice appears to cross the blood-brain barrier at a high rate in a human PV receptor (hPVR/CD155)-independent manner (44). After the virus enters the central nervous system, it replicates in neurons, especially in motor neurons (MNs), inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, a neuron-specific pathway has been reported in humans (31), monkeys (18), and PV-sensitive transgenic (Tg) mice carrying the hPVR gene (34, 37). This neuron-specific pathway appears to be important in causing “provocation poliomyelitis,” which is triggered by injuries after PV ingestion (11). Using differentiated PC12 cells and a PV-sensitive Tg mouse line, we have shown that intramuscularly inoculated PV is taken up by endocytosis at synapses.hPVR is a member of the immunoglobulin (Ig) superfamily, with three linked extracellular Ig-like domains, followed by a membrane-spanning domain and a cytoplasmic domain. Two membrane-bound forms (α and δ) and two secreted forms (β and γ) of hPVR derived by alternative splicing are likely to be expressed in human cells (23). Membrane-bound hPVRs are considered to play important roles in the early steps of infection, such as the binding of the virus to the cell surface, its entry into the cell, and the uncoating of the virus. The N-terminal Ig-like domain harbors the sites for PV binding, and anti-hPVR monoclonal antibodies (MAbs) directed against this region block PV infection (9, 24, 39).hPVR has the ability to alter the conformation of PV from the 160S intact infectious particle to a 135S particle from which the viral capsid protein VP4 is missing (2, 29). PV-related materials recovered from the sciatic nerves of PV-sensitive Tg mice after intramuscular inoculation with PV were mainly composed of intact 160S virions. The amount of 160S particles recovered was greatly reduced by coinjection with MAb p286, which specifically recognizes hPVR (34). Thus, most of the intramuscularly inoculated PV is incorporated into the sciatic nerves of PV-sensitive Tg mice as intact particles in an hPVR-dependent manner. This surprising finding might be due to either of two alternative, yet not mutually exclusive, possibilities: (i) a small number of PVRs bound per virion does not result in a conformational change in the viral capsid with a loss of VP4, but it is sufficient to induce endocytosis of the virus on the cell surface, or (ii) a cellular inhibitor(s) of PV uncoating may exist in the endocytic pathway responsible for PV uptake and transport in Tg mice (34).This mouse strain also allowed us to demonstrate that PV inoculated into the calf was incorporated into the sciatic nerve and retrogradely transported through the axons as intact virion particles. Furthermore, PV dissemination via the neural pathway has been found to rely on a fast retrograde axonal transport system and was inhibited by MAb p286 (34). Moreover, the efficient direct interaction of the hPVR cytoplasmic domain with Tctex-1, a light chain of cytoplasmic dynein (21), has been suggested to play an important role in retrograde transport, together with microtubule integrity (33). Cytoplasmic dynein, a minus-end-directed microtubule-based motor complex (13, 14, 17, 43), is implicated in the transport of early and late endosomes, lysosomes, synaptic vesicles, and endoplasmic reticulum along microtubules (1, 8, 13, 14, 17, 43). Notwithstanding the recent progress in the understanding of PV trafficking, the molecular determinants of the axonal transport of PV in MNs have not yet been elucidated.Despite the importance of axonal retrograde transport in health and disease, the direct visualization of retrograde transport and its quantitative analysis have been hampered by the lack of a reliable assay for living MNs. Such an assay was established in MNs by using a nontoxic fluorescent fragment of tetanus toxin (TeNT HC), which binds to MNs and is retrogradely transported (28). Here, we applied this assay to the visualization of PV in living MNs.We employed hPVR-Tg and non-Tg mice, together with cultured MNs isolated from these mice, to clarify the mechanisms of axonal retrograde transport of PV. Experiments involving cultured MNs showed that the entry and axonal transport of PV are strictly hPVR dependent. However, hPVR-independent axonal transport of PV can be observed in non-Tg as well as in hPVR-Tg mice, suggesting that multiple axonal transport routes for PV are present in vivo.  相似文献   

10.
Khan S  Peng X  Yin J  Zhang P  Wimmer E 《Journal of virology》2008,82(14):7167-7179
In contrast to Old World monkeys, most New World monkeys (NWMs) are not susceptible to poliovirus (PV), regardless of the route of infection. We have investigated the molecular basis of restricted PV pathogenesis of NWMs with two kidney cell lines of NWMs, TMX (tamarin) and NZP-60 (marmoset), and characterized their PV receptor homologues. TMX cells were susceptible to infection by PV1 (Mahoney) and PV3 (Leon) but not by PV2 (Lansing). Binding studies to TMX cells indicated that the formation of PV/receptor complexes increased when measured first at 4 degrees C and then at 25 degrees C, whereas PV2 did not significantly bind to TMX cells at either temperature. On the other hand, NZP-60 cells were not susceptible to infection by any of the PV serotypes. However, a low amount of PV1 bound to NZP-60 cells at 4 degrees C, but there was no increase of binding at 25 degrees C. In contrast, both NWM cell lines supported genome replication and virion formation when transfected with viral RNAs of either serotype, an observation indicating that infection was blocked in receptor-virus interaction. To overcome the receptor block, we substituted 3 amino acids in the marmoset receptor (nCD155), H80Q, N85S, and P87S, found in the human PV receptor, hCD155. Cells expressing the mutant receptor (L-nCD155mt) were now susceptible to infection with PV1, which correlated with an increase in PV1-bound receptor complexes from 4 degrees C to 25 degrees C. L-nCD155mt cells were, however, still resistant to PV2 and PV3. These data show that an increase in the formation of PV/receptor complexes, when measured at 4 degrees C and at 25 degrees C, correlates with and is an indicator of successful infection at 37 degrees C, suggesting that the complex formed at 25 degrees C may be an intermediate in PV uptake.  相似文献   

11.
Internal ribosomal entry sites (IRESs) can function in foreign viral genomes or in artificial dicistronic mRNAs. We describe an interaction between the wild-type hepatitis C virus (HCV)-specific sequence and the poliovirus (PV) 5'-terminal cloverleaf in a PV/HCV chimeric virus (containing the HCV IRES), resulting in a replication phenotype. Either a point mutation at nucleotide (nt) 29 or a deletion up to nt 40 in the HCV 5' nontranslated region relieved the replication block, yielding PV/HCV variants replicating to high titers. Fortuitous yet crippling interactions between an IRES and surrounding heterologous RNA must be considered when IRES-based dicistronic expression vectors are being constructed.  相似文献   

12.
The human poliovirus receptor alpha is a serine phosphoprotein.   总被引:2,自引:0,他引:2       下载免费PDF全文
J A Bibb  G Bernhardt    E Wimmer 《Journal of virology》1994,68(9):6111-6115
The human receptors for poliovirus (hPVR) are members of the immunoglobulin superfamily. Whereas the two membrane-bound isoforms, hPVR alpha and hPVR delta, share identical three-domain extracellular portions, their C-terminal cytoplasmic parts differ considerably. This feature is well conserved in the corresponding monkey proteins AGM alpha 1, AGM delta 1, and AGM alpha 2. The cellular function of these proteins is presently unknown. In this short communication we report that hPVR alpha and possibly also AGM alpha 1 and AGM alpha 2, but not the delta isoforms, are phosphoproteins. The phosphorylation occurs at a serine in the cytoplasmic tails of these receptors. We further present evidence suggesting that the kinase responsible for the phosphorylation is calcium/calmodulin kinase II.  相似文献   

13.
Poliovirus (PV) modifies membrane-trafficking machinery in host cells for its viral RNA replication. To date, ARF1, ACBD3, BIG1/BIG2, GBF1, RTN3, and PI4KB have been identified as host factors of enterovirus (EV), including PV, involved in membrane traffic. In this study, we performed small interfering RNA (siRNA) screening targeting membrane-trafficking genes for host factors required for PV replication. We identified valosin-containing protein (VCP/p97) as a host factor of PV replication required after viral protein synthesis, and its ATPase activity was essential for PV replication. VCP colocalized with viral proteins 2BC/2C and 3AB/3B in PV-infected cells and showed an interaction with 2BC and 3AB but not with 2C and 3A. Knockdown of VCP did not suppress the replication of coxsackievirus B3 or Aichi virus. A VCP-knockdown-resistant PV mutant had an A4881G (a mutation of E253G in 2C) mutation, which is known as a determinant of a secretion inhibition-negative phenotype. However, knockdown of VCP did not affect the inhibition of cellular protein secretion caused by overexpression of each individual viral protein. These results suggested that VCP is a host factor required for viral RNA replication of PV among membrane-trafficking proteins and provides a novel link between cellular protein secretion and viral RNA replication.  相似文献   

14.
Avian leukosis virus (ALV) has been used as a model system to understand the mechanism of pH-independent viral entry involving receptor-induced conformational changes in the viral envelope (Env) glycoprotein that lead to membrane fusion. Here, we report the unexpected finding that ALV entry depends on a critical low pH step that was overlooked when this virus was directly compared to the classical pH-dependent influenza A virus. In contrast to influenza A virus, receptor interaction plays an essential role in priming ALV Env for subsequent low pH triggering. Our results reveal a novel principle in viral entry, namely that receptor interaction can convert a pH-insensitive viral glycoprotein to a form that is responsive to low pH.  相似文献   

15.
We have identified a cellular protein from a continuous mosquito cell line (C6/36) that appears to play a significant role in the attachment of Venezuelan equine encephalitis (VEE) virus to these cells. VEE virus bound to a 32-kDa polypeptide present in the C6/36 plasma membrane fraction, and binding to this polypeptide was dose dependent and saturable and competed with homologous and heterologous alphaviruses. These observations suggest that this polypeptide binds virus via a receptor-ligand interaction. The 32-kDa polypeptide was expressed on the surfaces of C6/36 cells, and monoclonal antibodies directed against either this cell polypeptide or the VEE virus E2 glycoprotein, which is thought to be the viral attachment protein, interfered with virus attachment. Collectively, these data provide evidence suggesting that the 32-kDa polypeptide serves as a receptor for VEE virus infection of cells. We have characterized this cell polypeptide as a laminin-binding protein on the basis of its ability to interact directly with laminin as well as its immunologic cross-reactivity with the high-affinity human laminin receptor.  相似文献   

16.
17.
Entry of duck hepatitis B virus (DHBV) is initiated by specific interaction of its large envelope protein (L) with a cellular entry receptor, recently identified as carboxypeptidase D (CPD; historically gp180). In this report, we present evidence demonstrating that this receptor is down-regulated as a result of DHBV infection: (i) receptor levels determined by Western blot were much reduced in DHBV-infected duck livers and undetectable by immunostaining in infected cultured hepatocytes; (ii) results from metabolic labeling experiments indicate enhanced receptor protein turnover; (iii) the kinetics of receptor loss from newly infected cells correlated with the accumulation of newly synthesized viral protein; (iv) expression of DHBV L protein, transduced from a recombinant adenovirus, was sufficient to eliminate gp180/CPD from the Golgi compartment, its normal predominant location; (v) gp180/CPD remained absent from the Golgi compartment in infected hepatocytes, even after overexpression from a recombinant adenovirus, while residual amounts subsequently became detectable in a perinuclear compartment, containing DHBV L protein; (vi) expression of DHBV L protein in a HepG2 cell line, stably expressing gp180/CPD, leads to incomplete receptor maturation and induces its degradation. Taken together, these data are consistent with a model in which the virus receptor interacts early in the biosynthetic pathway with the viral L protein, leading to its retention in a pre-Golgi compartment and to subsequent degradation, thus preventing receptor interference with the export of DHBV via the secretory pathway which it shares with its receptor. Accordingly, and analogously with receptor down-regulation in retroviral systems, DHBV receptor down-modulation may account for the much-reduced efficiency of DHBV superinfection of preinfected hepatocytes.  相似文献   

18.
The envelope glycoproteins of human T-cell leukemia virus type 1 (HTLV-1) perform functions that are crucial for virus entry into cells. The surface glycoprotein (SU) is responsible for viral recognition of, and binding to, target cells through its interaction with an unknown cell surface receptor. To facilitate molecular analysis of the receptor-binding properties of SU and to characterize the cellular receptor employed by HTLV-1, we have expressed a recombinant SU fused to the Fc domain of human immunoglobulin G. Here, we demonstrate that this novel SU-immunoadhesin retains both the biochemical properties of Fc and the receptor-binding specificity of the HTLV-1 SU. We use this SU-immunoadhesin to demonstrate, by direct cell surface binding assays, that the receptor used by HTLV-1 has been conserved through vertebrate evolution. Moreover, using murine-human somatic cell hybrids we provide data that do not support the previously assigned location for the HTLV-1 receptor on human chromosome 17. Most importantly, we show that many cell lines that are resistant to HTLV-1 envelope-mediated infection and syncytium formation express functional receptors that are recognized by the HTLV-1 SU. Based on our results, we suggest that for some HTLV-1-resistant cell lines the block to viral entry occurs at a late post-receptor-binding step of the entry process. Our findings will be of value in developing new strategies to identify the cellular receptor used by HTLV-1.  相似文献   

19.
Human respiratory syncytial virus (RSV) causes a large burden of disease worldwide. There is no effective vaccine or therapy, and the use of passive immunoprophylaxis with RSV-specific antibodies is limited to high-risk patients. The cellular receptor (or receptors) required for viral entry and replication has yet to be described; its identification will improve understanding of the pathogenesis of infection and provide a target for the development of novel antiviral interventions. Here we show that RSV interacts with host-cell nucleolin via the viral fusion envelope glycoprotein and binds specifically to nucleolin at the apical cell surface in vitro. We observed decreased RSV infection in vitro in neutralization experiments using nucleolin-specific antibodies before viral inoculation, in competition experiments in which virus was incubated with soluble nucleolin before inoculation of cells, and upon RNA interference (RNAi) to silence cellular nucleolin expression. Transfection of nonpermissive Spodoptera frugiperda Sf9 insect cells with human nucleolin conferred susceptibility to RSV infection. RNAi-mediated knockdown of lung nucleolin was associated with a significant reduction in RSV infection in mice (P = 0.0004), confirming that nucleolin is a functional RSV receptor in vivo.  相似文献   

20.
Zhou G  Roizman B 《Journal of virology》2005,79(9):5272-5277
Malignant glioma tumor cells in situ exhibit on their surfaces the interleukin 13 (IL-13) receptor designated IL13Ralpha2. To target herpes simplex virus 1 to this receptor, we constructed a recombinant virus (R5111) in which the known heparan sulfate binding sites in glycoproteins B and C were deleted and IL-13 was inserted into both glycoproteins C and D. We also transduced a baby hamster kidney cell line lacking the known viral receptors (J1-1) and Vero cells with a plasmid encoding IL13Ralpha2. The J1-1 derivative (J-13R) cell line is susceptible to and replicates the R5111 recombinant virus but not the wild-type parent virus. We report the following. (i) Expression of IL13Ralpha2 was rapidly lost from the surface of transduced cells grown in culture. The loss appeared to be related to ligands present in fetal bovine serum in the medium. None of the malignant glioma cell lines cultivated in vitro and tested to date exhibited the IL13Ralpha2 receptor. (ii) Soluble IL-13 but not IL-4 or IL-2 blocked the replication of R5111 recombinant virus in J-13R cells. (iii) The endocytosis inhibitor PD98059 blocked the replication in J1-1 cells of a mutant lacking glycoprotein D (gD-/-) but not the replication of R5111 in the J-13R cells. We conclude that R5111 enters cells via its interaction with the IL13Ralpha2 receptor in a manner that cannot be differentiated from the interaction of wild-type virus with its receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号