首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scaffold attachment regions in centromere-associated DNA   总被引:10,自引:0,他引:10  
Due to indications that kinetochore proteins are an integral part of the protein scaffold component of the chromosome (Earnshaw et al. 1984), we chose to map the distribution of scaffold attachment regions (SARs) at centromeres. Using the SAR mapping assay of Mirkovitch et al., Southern blots were prepared and probed with 32P-labeled fragments from the human 1.9 kb centromeric α-satellite repeat unit of chromosome 1 or the 1.7 kb centromeric α-satellite repeat unit of chromosome 16. Our results demonstrated the presence of one SAR site per 1.9 kb repeat unit in chromosome 1, and every 1.7 kb repeat unit in chromosome 16, separated by regions of small DNA loops over the length of the α-satellite regions. We also identified several in vitro vertebrate topoisomerase II and cenP-B consensus sequences throughout the chromosome 1 α-satellite region using computer and base ratio analysis, to address the question as to why some α-satellite regions are SAR related and others are not. To provide in situ indications of SAR localization in the human genome, SAR DNA and non-SAR DNA were prepared following lithium 3,5-di-iodosalicylate extraction. Sequences protected from DNAse I digestion by SAR proteins, as compared with unprotected DNA that was digested by the enzyme, was labeled with biotin-UTP, hybridized to chromosomal DNA in situ, and then detected with fluorescein-avidin-DCS. Both SAR and non-SAR DNA selectively labeled virtually all centromeric regions of the human metaphase karyotype. Chromosomal arms were less strongly bound by SAR DNA, with a pattern that followed the chromosomal axis. In the more condensed chromosomes an R-banding pattern was evident. In general, labeling patterns produced by both SAR and non-SAR fractions were similar, as expected from the indications that SAR DNAs are heterogenous in sequence and do not form a specific class of sequences. We conclude that centromeric regions of several, possibly all, human metaphase chromosomes are also regions where the chromosomal axis contains loops, smaller in size than in the arms and where attachment sites are concentrated. This clustering of SARs may be responsible in part for the tight chromatin packing associated with the primary constriction of the centromeric region. Received: 10 October 1995; in revised form: 10 May 1996 / Accepted: 13 May 1996  相似文献   

2.
Centromeric DNA in the fission yeast Schizosaccharomyces pombe was isolated by chromosome walking and by field inversion gel electrophoretic fractionation of large genomic DNA restriction fragments. The centromere regions of the three chromosomes were contained on three SalI fragments (120 kilobases [kb], chromosome III; 90 kb, chromosome II; and 50 kb, chromosome I). Each fragment contained several repetitive DNA sequences, including repeat K (6.4 kb), repeat L (6.0 kb), and repeat B, that occurred only in the three centromere regions. On chromosome II, these repeats were organized into a 35-kb inverted repeat that included one copy of K and L in each arm of the repeat. Site-directed integration of a plasmid containing the yeast LEU2 gene into K repeats at each of the centromeres or integration of an intact K repeat into a chromosome arm had no effect on mitotic or meiotic centromere function. The centromeric repeat sequences were not transcribed and possessed many of the properties of constitutive heterochromatin. Thus, S. pombe is an excellent model system for studies on the role of repetitive sequence elements in centromere function.  相似文献   

3.
To continue the systematic examination of the physical and genetic organization of an entire Saccharomyces cerevisiae chromosome, the DNA from the CEN1-ADE1-CDC15 region from chromosome I was isolated and characterized. Starting with the previously cloned ADE1 gene (J. C. Crowley and D. B. Kaback, J. Bacteriol. 159:413-417, 1984), a series of recombinant lambda bacteriophages containing 82 kilobases of contiguous DNA from chromosome I were obtained by overlap hybridization. The cloned sequences were mapped with restriction endonucleases and oriented with respect to the genetic map by determining the physical positions of the CDC15 gene and the centromeric DNA (CEN1). The CDC15 gene was located by isolating plasmids from a YCp50 S. cerevisiae genomic library that complemented the cdc15-1 mutation. S. cerevisiae sequences from these plasmids were found to be represented among those already obtained by overlap hybridization. The cdc15-1-complementing plasmids all shared only one intact transcribed region that was shown to contain the bona fide CDC15 gene by in vitro gene disruption and one-step replacement to delete the chromosomal copy of this gene. This deletion produced a recessive lethal phenotype that was also recessive to cdc15-1. CEN1 was located by finding a sequence from the appropriate part of the cloned region that stabilized the inheritance of autonomously replicating S. cerevisiae plasmid vectors. Finally, RNA blot hybridization and electron microscopy of R-loop-containing DNA were used to map transcribed regions in the 23 kilobases of DNA that went from CEN1 to CDC15. In addition to the transcribed regions corresponding to the ADE1 and ADC15 genes, this DNA contained five regions that gave rise to polyadenylated RNA, at least two regions complementary to 4S RNA species, and a Ty1 transposable element. Notably, a higher than average proportion of the DNA examined was transcribed into RNA.  相似文献   

4.
J M Rosen  S W Barker 《Biochemistry》1976,15(24):5272-5280
Two highly purified rat casein mRNA fractions were used as templates to synthesize complementary DNA (cDNA) hybridization probes using RNA-directed DNA polymerase isolated from avian myeloblastosis virus. Both of the probes selectively hybridized to RNA isolated from lactating mammary tissue, but not to poly(adenylic acid)-containing rat liver RNA. An analysis of the kinetics of hybridization of the cDNA derived from the 15S casein mRNA (cDNA12S) with their individual mRNA templates indicated that greater than 90% hybridization occurred over a R0t range of one and one-half logs with R0t 1/2 values of 0.0023 and 0.0032 mol s l.-1, respectively. Compared with the total RNA isolated from lactating mammary tissue, these values represented a 166- and 245-fold purification, respectively, of these individual mRNA fractions. Using the 15S casein mRNA as a template, two probes of different lengths and specific activities were synthesized. The deoxyribonucleotide and mRNA concentrations and the temperature of incubation were optimized to obtain either a high specific activity cDNA probe, 330 nucleotides long, which represented approximately 25% of the mRNA or a lower specific activity preparation containing some complete cDNA copies, 1300 nucleotides in length. The Tm of the longer cDNA15S-15S mRNA hybrid was 88.5 degrees C, while that of the short cDNA15S-RNA hybrid was 82.5 degrees C. Following this initial characterization, the cDNA15S probe was utilized for three separate determinations: (1) Analysis of the sequence divergence between mouse and rat casein mRNAs. It was observed that the rate of hybridization of heterologous rat cDNA15S-mouse casein mRNA was only 20% that of the homologous rat cDNA15S-rat casein mRNA hybridization. The resulting heterologous hybrid displayed approximately 17% mismatching compared with the homologous hybrid. (2) Determination of the gene dosage for casein mRNA in normal and malignant mammary cells. In this study, an analysis of the kinetics of hybridization of the high specific activity cDNA15S probe with an excess of DNA isolated from lactating mammary tissue, carcinogen-induced mammary tumors, or rat liver indicated that casein mRNA was transcribed from the nonlification or deletion was observed during tumor formation or the process of mammary differentiation. (3) Quantitation of casein mRNA sequences during normal mammary gland development. RNA excess hybridizations were performed using RNA extracted from either pregnant, lactating, or regressed rat mammary tissue. The concentration of casein mRNA molecules/alveolar cell was found to increase 12-fold from 5 days of pregnancy until 8 days of lactation and then declined to approximately 2% of the maximal level of 79 000 molecules/cell by 7 days after weaning. A coordinate increase was observed in casein mRNA sequences detected by cDNA hybridization and mRNA activity measured in a cell-free translation assay.  相似文献   

5.
6.
A 340-bp EcoRI fragment of alpha satellite DNA from human chromosome 12 has been isolated and used in molecular cytogenetic and genetic studies. The clone, pSP12-1, detects tandemly repeated 1.4-kb repeat units at the centromeric region of chromosome 12. By fluorescence in situ hybridization, biotinylated pSP12-1 is highly specific for chromosome 12 and has been used to confirm an i(12p) in a case of Pallister-Killian syndrome, both in metaphase spreads and in interphase nuclei. A dominant DNA polymorphism for the centromeric D12Z3 locus is detected with the enzyme TaqI. In addition, a high frequency of D12Z3 array length polymorphisms can be detected using pulsed-field gel electrophoresis. The D12Z3 array has been measured by pulsed-field gel electrophoresis to span approximately 2,250-4,300 kb at the centromeric region of chromosome 12.  相似文献   

7.
Small stable RNA molecules of Escherichia coli other than 5S (rRNA) and 4S (tRNA) were studied. Two of the molecules corresponded to 4.5S and 6S RNA, which have been reported previously. The third stable RNA molecule, 10S RNA, has not been described before. RNA labeled with (32)P(i) or [(14)C]uracil for a relatively long time, when separated in 5%/12% tandem polyacrylamide gels, displayed three bands corresponding to 10S, 6S, and 4.5S RNA in addition to rRNA and tRNA bands. These RNAs were stable in pulse-chase-labeling experiments. The amount of these RNAs was small, comprising only 0.2 to 0.5% of the total (32)P incorporation. However, this amount represented a large number of molecules; for 6S and 4.5S, it was about 1,000/DNA molecule. These three RNAs were found in the postribosomal supernatant fraction. None of them was found in purified nucleoid fractions in which the tightly coiled DNA molecules were contained. Of these three RNAs, 6S RNA was unique in that it seemed to exist in a ribonucleoprotein particle. All these RNAs, as well as tRNA, were very stable in the cell under various physiological conditions. 5S RNA was less stable. On the other hand, purified 6S RNA was more susceptible than tRNA to cell nucleases when incubated with cell extracts, suggesting that, being in a particle, it is protected from cell nucleases.  相似文献   

8.
Dhar MK  Friebe B  Koul AK  Gill BS 《Chromosoma》2002,111(5):332-340
The present study documents the de novo origin of an apparent B chromosome in Plantago lagopus. The origin was associated with mutation (aneuploidy), chromosome fragmentation, specific DNA sequence amplification, addition of telomeric repeats, and centromeric misdivision. It originated in the progeny of trisome 2, from the excision of 5S rDNA and 18S, 5.8S, 25S rDNA sequences located on chromosome 2, and within a few generations acquired many characteristics of an apparent B chromosome. The B chromosome has preferential transmission through the male (41%, P<0.025) and female gametes (42%, P<0.01) but does not affect plant phenotype. The B chromosome is completely heterochromatic, has a functional centromere and does not pair at meiosis with any A chromosomes of the standard complement. Fluorescence in situ hybridization analysis showed that it arose from massive amplification of 5S rDNA sequences, has 18S, 5.8S, 25S rDNA sequences at the ends of both arms and telomeric repeats at both termini. Ag-NOR-banding and determination of the maximum number of nucleoli in interphase cells indicate that the nucleolar organizer regions at the ends of both arms of the B chromosome are active in organizing nucleoli. RNA blot analysis showed that the 5S rDNA sequences are not transcribed. To our knowledge, this is the first report that fully documents one of the mechanisms by which B chromosomes may arise in nature.  相似文献   

9.
The in situ hybridization method has been used to investigate the localization of each of the three satellite DNAs present in the genome of the guinea pig. Purified fractions of the satellite DNAs were utilized as templates for synthesis of 3H-labeled complementary RNA (cRNA) by E. coli RNA polymerase, then each cRNA was hybridized to metaphase spreads of embryonic guinea pig cells. The cRNAs of all three satellite DNAs hybridized predominantly to the centromeric region of the chromosomes. The cRNAs of satellite DNAs II and III hybridized to all chromosomes except the Y chromosome. The cRNA of satellite DNA I did not hybridize to the Y chromosome nor to two pairs of small acrocentric chromosomes. Satellite II cRNA hybridized to the telomeric region of chromosomes 3 and 4.  相似文献   

10.
Cytological detection of cistrons coding for 18S and 28S ribosomal RNA (rRNA) within the genome of Mus musculus inbred strain SEC/1ReJ was accomplished using the technique of in situ hybridization. Metaphase chromosome spreads prepared from cultured fetal mouse cells were stained with quinacrine-HCl and photographed. After destaining, they were hybridized to Xenopus laevis tritiated 18S and 28S rRNA, specific activity 7.5 X 10(6) dpm/mug. Silver grains clustered over specific chromosomes were readily apparent after 4 months of autoradiographic exposure. The identity of the labelled chromosomes was established by comparing the autoradiographs to quinacrine photographs showing characteristic fluorescent banding of the chromosomes in each metaphase spread. The 18S and 28S rRNA was found to hybridize to chromosomes 12, 18, and 16. Statistical analysis of the grain distribution over 26 spreads revealed that the three chromosomes were significantly labelled. Grains over these chromosomes were concentrated in an area immediately distal to the centromere, a region which in chromosomes 12 and 18 in this particular strain is the site of a secondary constriction. The relative size of the secondary constrictions, long and thus prominent on chromosome 12, obvious but shorter on 18, and indistinguishable on chromosome 16, correlated with the average number of grains observed over the centromeric region of these chromosomes, 2.5, 1.0, and 0.78, respectively.  相似文献   

11.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

12.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

13.
14.
15.
RNA interference (RNAi) is a promising approach for cancer treatment. Site specific and controlled delivery of RNAi could be beneficial to the patient, while at the same time reducing undesirable off-target side effects. We utilized electrospinning to generate a biodegradable scaffold capable of incorporating and delivering a bioactive plasmid encoding for short hairpin (sh) RNA against the cell cycle specific protein, Cdk2. Three electrospun scaffolds were constructed, one using polycaprolactone (PCL) alone (Control) and PCL with plasmid DNA encoding for either Cdk2 (Cdk2i) and EGFP (EGFPi, also served as a control) shRNA. Scaffold fiber diameters ranged from 1 to 20 µm (DNA containing) and 0.2–3 µm (Control). While the electrospun fibers remained intact for more than two weeks in physiological buffer, degradation was visible during the third week of incubation. Approximately 20–60 ng/ml (∼2.5% cumulative release) of intact and bioactive plasmid DNA was released over 21 days. Further, Cdk2 mRNA expression in cells plated on the Cdk2i scaffold was decreased by ∼51% and 30%, in comparison with that of cells plated on Control or EGFPi scaffold, respectively. This decrease in Cdk2 mRNA by the Cdk2i scaffold translated to a ∼40% decrease in the proliferation of the breast cancer cell line, MCF-7, as well as the presence of increased number of dead cells. Taken together, these results represent the first successful demonstration of the delivery of bioactive RNAi-based plasmid DNA from an electrospun polymer scaffold, specifically, in disrupting cell cycle regulation and suppressing proliferation of cancer cells.  相似文献   

16.
Fluorescent labeling of plant chromosomes in suspension by FISH   总被引:1,自引:0,他引:1  
By optimizing the concentration and time of treatment with hydroxyurea (HU), a DNA synthesis inhibitor, and trifluralin, a microtubule inhibitor, a highly effective (over 60%) cell cycle synchronization method for rye and barley meristem cells was developed. Chromosome suspensions containing highly purified and morphologically intact rye and barley chromosomes were prepared from the meristems of their root tips by homogenization. Digoxigenin-labeled 5S rDNA was used as a probe in FISH for the rye chromosomes in the suspension, and biotin-labeled 17S rDNA and centromeric DNA were used in FISH for the rye and barley chromosome suspensions, respectively. Bright signals were detected at the specific regions of interest on the chromosomes. The results indicate that the method developed in this study is useful for selection and sorting of chromosomes that are not distinguishable by other means, using specific fluorescent labeling by FISH of the chromosomes in suspension.  相似文献   

17.
RNA synthesis in the venom glands of Crotalus durissus terrificus was stimulated by the manual extraction of the venom (milking). RNA was extracted from venom glands activated by milking and fractionated by centrifugation through sucrose density gradients. Template activity for protein synthesis and base composition of the RNA fractions were studied. RNA fractions that sediment between 18S and 4S had the highest template activity. The base composition analysis indicated that the 28S and 18S rRNA have a C+G content of 65.4 and 58% respectively. The ;melting' temperature (T(m)) of DNA in 0.15m-NaCl-0.015m-trisodium citrate, pH7.0, was 85 degrees C, corresponding to a C+G content of 38%. The base ratio of the RNA fractions that showed a high template activity was intermediate between that of rRNA and homologous DNA. The possible role of these fractions in the synthesis of the two main toxins (crotoxin and crotamine) of the South American rattlesnake's venom is discussed.  相似文献   

18.
4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders.  相似文献   

19.
Four diploid and three phylogenetically tetraploid Cyprinidae (Ostariophysi) have been characterized as for nuclear DNA content, modal chromosome number and DNA reassociation kinetics (hydroxyapatite chromatography). Among the diploid species nuclear DNA content (10(-12) g DNA/2C) was 1.62 for Tinca tinca, 1.87 for Scardinius erythrophthalmus, 2.53 for Leuciscus cephalus and 2.75 for Alburnus alburnus, while the phylogenetically tetraploid species Carassius auratus, Barbus barbus and Cyprinus carpio attained 3.40, 3.66 and 3.80 respectively. Modal chromosome number was 2n = 48-50 for diploid individuals and 2n = 100-104 for phylogenetically tetraploid ones. In all the species 5--8% of the genome is represented by highly repetitive and foldback DNA. In DNA reassociation kinetics of phylogenetically tetraploid Cyprinidae a distinct plateau separates an intermediate reassociating sequence fraction (about 22% of the genome; with average repetition frequencies between 1,000 and 1,400) from a slow reassociating one (unique DNA; about 72% of the genome). These two genome fractions are not clearly distinguishable from each other in Cot curves of the diploid Cyprinidae, where a similar plateau is not evident. Since simple ploidy changes are not expected to affect DNA reassociation kinetics we suggest a different evolution in the genome organization of the two ploidy groups. Some possible hypotheses are discussed.  相似文献   

20.
The DNA composition and the in situ hybridization of satellite fractions were analysed in the New World camelids llama, alpaca, guanaco and vicuña. In the four camelid forms, it was possible to identify a similar main band DNA and five satellite fractions (I–V) with G+C base contents ranging from 32% to 66%. Satellites II–V from llama were in situ reannealed on chromosomes from the four camelid forms. The results obtained were: (a) the four satellites hybridized with regions of C-banding (centromeric regions of all chromosomes and short arms of some autosomes); (b) in general, homologous hybridizations (llama DNA versus llama chromosomes) were more efficient than heterologous reassociations; there were however three exceptions to this rule (vicuña and alpaca satellite fraction II, chromosome group B; vicuña fraction V, chromosome groups A and B); (c) X chromosomes from the four camelids had satellites III–V but lacked satellite II, (d) no satellite fraction was detected on chromosome Y. The analysis of the in situ hybridization patterns allowed to conclude that most or all C-banded chromosome regions comprise several satellite DNA fractions. It is, moreover, proposed that there is an ample interspecies variation in the number of chromosomes that cross-react with a given satellite fraction. Our data give further support to the close genomic kinship of New World camelids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号